Occupational Exposure Assessment of the Static Magnetic Field Generated by Nuclear Magnetic Resonance Spectroscopy: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
- z = 160 cm head;
- z = 120 cm thorax–heart;
- z = 80 cm hip;
- z = 60 cm hands;
- z = 40 cm knee.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louis-Joseph, A.; Lesot, P. Designing and building a low-cost portable FT-NMR spectrometer in 2019: A modern challenge. Comptes Rendus Chim. 2019, 22, 695–711. [Google Scholar] [CrossRef]
- Keeler, J. Understanding NMR Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2010; p. 511. [Google Scholar]
- Wong, K.C. Review of NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry. J. Chem. Educ. 2014, 91, 1103–1104. [Google Scholar] [CrossRef]
- Armstrong, P.; Keevil, S.F. Magnetic resonance imaging—1: Basic principles of image production. BMJ 1991, 303, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRobbie, D.W. Essentials of MRI Safety; Wiley-Blackwell: Hoboken, NJ, USA, 2020; ISBN 9781119557173. [Google Scholar]
- McRobbie, D.W.; Moore, E.A.; Graves, M.J.; Prince, M.R. MRI from Picture to Proton; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781107706958. [Google Scholar]
- Acri, G.; Sansotta, C.; Ruello, E.V.; Denaro, L.; Salmeri, F.M.; Testagrossa, B. The Use of Time Domain NMR in Food Analysis: A Review. Curr. Nutr. Food Sci. 2020, 17, 558–565. [Google Scholar] [CrossRef]
- Rathebe, P.C. Subjective symptoms of SMFs and RF energy, and risk perception among staff working with MR scanners within two public hospitals in South Africa. Electromagn. Biol. Med. 2022, 41, 152–162. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, K.A. Safety issues and updates under MR environments. Eur. J. Radiol. 2017, 89, 7–13. [Google Scholar] [CrossRef]
- Kangarlu, A.; Robitaille, P.L. Biological Effects and Health Implications in Magnetic Resonance Imaging. Concepts Magn. Reson. 2000, 12, 321–359. [Google Scholar] [CrossRef]
- Schaap, K.; Christopher-de Vries, Y.; Mason, C.K.; de Vocht, F.; Portengen, L.; Kromhout, H. Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 Tesla MRI scanners is associated with reporting of transient symptoms. Occup. Environ. Med. 2014, 71, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, V.; Virgili, G.; Mattei, F.; Biagini, C.; Romeo, S.; Zeni, O.; Scarfì, M.R.; Massa, R.; Campanella, F.; Landini, L.; et al. Occupational exposure to electromagnetic fields in magnetic resonance environment: An update on regulation, exposure assessment techniques, health risk evaluation, and surveillance. Med. Biol. Eng. Comput. 2021, 1, 3. [Google Scholar] [CrossRef]
- De Vocht, F.; Batistatou, E.; Mölter, A.; Kromhout, H.; Schaap, K.; van Tongeren, M.; Crozier, S.; Gowland, P.; Keevil, S. Transient health symptoms of MRI staff working with 1.5 and 3.0 Tesla scanners in the UK. Eur. Radiol. 2015, 25, 2718–2726. [Google Scholar] [CrossRef]
- Acri, G.; Inferrera, P.; Denaro, L.; Sansotta, C.; Ruello, E.; Anfuso, C.; Salmeri, F.M.; Garreffa, G.; Vermiglio, G.; Testagrossa, B. dB/dt evaluation in MRI sites: Is ICNIRP threshold limit (for workers) exceeded? Int. J. Environ. Res. Public Health 2018, 15, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, G.; Modenese, A.; Arcangeli, G.; Bertoldi, C.; Camisa, V.; Corona, G.; Giglioli, S.; Ligabue, G.; Moccaldi, R.; Mucci, N.; et al. Subjective Symptoms in Magnetic Resonance Imaging Personnel: A Multi-Center Study in Italy. Front. Public Health 2021, 9, 699675. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council of the European Union. Directive 2013/35/EC on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Off. J. Eur. Union 2013, 56, L179/1–L179/21. [Google Scholar]
- ICNIRP. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010, 99, 818–836. [Google Scholar] [CrossRef]
- ICNIRP. Guidelines for limiting exposure to electric fields induced by and by time-varying magnetic fields below 1 Hz. Health Phys. 2014, 106, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Zilberti, L.; Bottauscio, O.; Chiampi, M. A Potential-Based Formulation for Motion-Induced Electric Fields in MRI. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Zilberti, L.; Bottauscio, O.; Chiampi, M. Assessment of exposure to MRI motion-induced fields based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Magn. Reson. Med. 2016, 76, 1291–1300. [Google Scholar] [CrossRef]
- Gurrera, D.; Gallias, K.K.; Spanò, M.; Abbate, B.F.; D’Alia, F.; Iacoviello, G.; Caputo, V. Moving across the static magnetic field of a 1.5 T MRI scanner: Analysing compliance with Directive 2013/35/EU. Phys. Med. 2019, 57, 238–244. [Google Scholar] [CrossRef]
- Laakso, I.; Kännälä, S.; Jokela, K. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner. Phys. Med. Biol. 2013, 58, 2625–2640. [Google Scholar] [CrossRef] [Green Version]
- Roemer, P.B.; Wade, T.; Alejski, A.; Ertan, K.; McKenzie, C.A.; Rutt, B.K.; Lutz, F. Electric field calculation and peripheral nerve stimulation prediction for head and body gradient coils. Magn. Reson. Med. 2021, 86, 2301–2315. [Google Scholar] [CrossRef]
- Acri, G.; Testagrossa, B.; Causa, F.; Tripepi, M.G.; Vermiglio, G.; Novario, R.; Pozzi, L.; Quadrelli, G. Evaluation of occupational exposure in magnetic resonance sites. Radiol. Med. 2014, 119, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Gurrera, D.; Leardini, A.; Ortolani, M.; Durante, S.; Caputo, V.; Gallias, K.K.; Abbate, B.F.; Rinaldi, C.; Iacoviello, G.; Acri, G.; et al. Experimental and Modeling Analyses of Human Motion Across the Static Magnetic Field of an MRI Scanner. Front. Bioeng. Biotechnol. 2021, 1, 613616. [Google Scholar] [CrossRef] [PubMed]
- Sannino, A.; Romeo, S.; Scarfi, M.R.; Massa, R.; d’Angelo, R.; Petrillo, A.; Cerciello, V.; Fusco, R.; Zeni, O. Exposure assessment and biomonitoring of workers in Magnetic Resonance environment: An exploratory study. Front. Public Health 2017, 5, 344. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, V.; Virgili, G.; Ferrante Vero, L.F.; De Marchi, D.; Landini, L.; Giovannetti, G. Towards a Personalised and Interactive Assessment of Occupational Exposure To Magnetic Field During Daily Routine in Magnetic Resonance. Radiat. Prot. Dosim. 2018, 182, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, V.; Biagini, C.; De Marchi, D.; Flori, A.; Gabellieri, C.; Virgili, G.; Ferrante Vero, L.F.L.F.; Landini, L.; Vanello, N.; Giovannetti, G. The Procedure for Quantitative Characterization and Analysis of Magnetic Fields in Magnetic Resonance Sites for Protection of Workers: A Pilot Study. Ann. Work Expo. Health 2019, 63, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, V.; Biagini, C.; De Marchi, D.; Flori, A.; Gabellieri, C.; Virgili, G.; Fabiano, L.; Vero, F.; Landini, L.; Vanello, N.; et al. Analysis, comparison and representation of occupational exposure to a static magnetic field in a 3-T MRI site. Int. J. Occup. Saf. Ergon. 2020, 28, 76–85. [Google Scholar] [CrossRef]
- Anthropometry and Biomechanics. Available online: https://msis.jsc.nasa.gov/sections/section03.htm (accessed on 29 April 2022).
- Karpowicz, J.; Gryz, K. Health risk assessment of occupational exposure to a magnetic field from magnetic resonance imaging devices. Int. J. Occup. Saf. Ergon. 2006, 12, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, V.; Vanello, N.; Giovannetti, G.; Lombardi, M.; Landini, L.; Santarelli, M.F. A novel tool for estimation of magnetic resonance occupational exposure to spatially varying magnetic fields. Magn. Reson. Mater. Phys. Biol. Med. 2011, 24, 323–330. [Google Scholar] [CrossRef]
- Hartwig, V.; Vanello, N.; Giovannetti, G.; Landini, L.; Santarelli, M.F. Estimation of occupational exposure to static magnetic fields due to usual movements in magnetic resonance units. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2014, 44, 75–81. [Google Scholar] [CrossRef]
- McRobbie, D.W. Occupational exposure in MRI. Br. J. Radiol. 2012, 85, 293–312. [Google Scholar] [CrossRef] [Green Version]
- Milani, R.; Coda, S.; Baccani, G.; Campanella, F.; Mattozzi, M.; Ferrari, P. Applicazione del Decreto Legislativo 159/2016: Valutazione del Rischio da Movimento nella Pratica di Risonanza Magnetica. Available online: https://www.inail.it/cs/internet/docs/all-sic-ris-mag-applicazione-decreto-legis-159-2016.pdf?section=attivita (accessed on 21 June 2022).
- ICNIRP. Guidelines on Limits of Exposure to Static Magnetic Fields. Health Phys. 2009, 96, 504–514. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Non-Binding Guide to Good Practice for Implementing Directive 2013/35/EC Volume 2: Case Studies; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commission. Non-Binding Guide to Good Practice for Implementing Directive 2013/35/EC Electromagnetic Fields Volume 1: Practical Guide; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Berlana, T.; Úbeda, A. Occupational exposure of NMR spectrometrists to static and radiofrequency fields. Radiat. Prot. Dosim. 2017, 177, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Decat, G. Occupational Exposure Assessment of the Static Magnetic Flux Density Generated by Nuclear Magnetic Resonance Spectroscopy for Biochemical Purposes. PIERS Online 2007, 3, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Acri, G.; Testagrossa, B.; Vermiglio, G. Personal Time-Varying Magnetic Fields Evaluation during Activities in MRI Sites. In IFMBE Proceedings, Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Toronto, ON, Canada, 7–12 June 2015; Springer Nature: Cham, Switzerland, 2015; Volume 51, pp. 741–744. [Google Scholar]
- Vuorinen, A.M.; Paakkanen, R.; Karvonen, J.; Sinisalo, J.; Holmström, M.; Kivistö, S.; Peltonen, J.I.; Kaasalainen, T. Magnetic resonance imaging safety in patients with abandoned or functioning epicardial pacing leads. Eur. Radiol. 2022, 32, 3830–3838. [Google Scholar] [CrossRef]
- Driessen, S.; Bodewein, L.; Dechent Id, D.; Graefrath, D.; Schmiedchen, K.; Stunder, D.; Kraus, T.; Petriid, A.-K. Biological and health-related effects of weak static magnetic fields (≤1 mT) in humans and vertebrates: A systematic review. PLoS ONE 2020, 15, e0230038. [Google Scholar] [CrossRef]
NMR Spectrometer | B0 (T) | Frequency (MHz) | Shielding | Room Size (m) |
---|---|---|---|---|
Bruker | 7 | 300 | Active | 4.30 × 5.00 |
MOD 1 | Constant speed = vmax | ||
MOD 2 | Linear increase − constant = vmax | ||
MOD 3 | Linear increase − constant = vmax − linear decrease | ||
vmax | v1 = 1 m/s | v2 = 1.6 m/s | v3 = 2 m/s |
Peak Value | MOD 1 | MOD 2 | MOD 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
v1 | v2 | v3 | v1 | v2 | v3 | v1 | v2 | v3 | |
|B| mT | 18.08 | 18.08 | 18.08 | 18.08 | 18.08 | 18.08 | 18.08 | 18.08 | 18.08 |
|E| mV/m | 11.11 | 17.77 | 22.21 | 0.52 | 0.84 | 1.04 | 1.05 | 1.68 | 2.10 |
|dB/dt| mT/s | 69.42 | 111.07 | 138.84 | 3.26 | 5.22 | 6.53 | 6.56 | 10.50 | 13.12 |
Peak Value | MOD 1 | MOD 2 | MOD 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
v1 | v2 | v3 | v1 | v2 | v3 | v1 | v2 | v3 | |
|B| mT | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 | 10.50 |
|E| mV/m | 5.47 | 8.75 | 10.94 | 0.31 | 0.49 | 0.61 | 0.61 | 0.97 | 1.22 |
|dB/dt| mT/s | 34.19 | 54.70 | 68.38 | 1.89 | 3.03 | 3.79 | 3.81 | 6.09 | 7.62 |
Peak Value | MOD 1 | MOD 2 | MOD 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
v1 | v2 | v3 | v1 | v2 | v3 | v1 | v2 | v3 | |
|B| mT | 6.46 | 6.46 | 6.46 | 6.46 | 6.46 | 6.46 | 6.46 | 6.46 | 6.46 |
|E| mV/m | 2.60 | 4.17 | 5.21 | 0.18 | 0.30 | 0.37 | 0.37 | 0.59 | 0.74 |
|dB/dt| mT/s | 16.30 | 26.07 | 32.58 | 1.15 | 1.84 | 2.30 | 2.31 | 3.71 | 4.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartwig, V.; Sansotta, C.; Morelli, M.S.; Testagrossa, B.; Acri, G. Occupational Exposure Assessment of the Static Magnetic Field Generated by Nuclear Magnetic Resonance Spectroscopy: A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 7674. https://doi.org/10.3390/ijerph19137674
Hartwig V, Sansotta C, Morelli MS, Testagrossa B, Acri G. Occupational Exposure Assessment of the Static Magnetic Field Generated by Nuclear Magnetic Resonance Spectroscopy: A Case Study. International Journal of Environmental Research and Public Health. 2022; 19(13):7674. https://doi.org/10.3390/ijerph19137674
Chicago/Turabian StyleHartwig, Valentina, Carlo Sansotta, Maria Sole Morelli, Barbara Testagrossa, and Giuseppe Acri. 2022. "Occupational Exposure Assessment of the Static Magnetic Field Generated by Nuclear Magnetic Resonance Spectroscopy: A Case Study" International Journal of Environmental Research and Public Health 19, no. 13: 7674. https://doi.org/10.3390/ijerph19137674
APA StyleHartwig, V., Sansotta, C., Morelli, M. S., Testagrossa, B., & Acri, G. (2022). Occupational Exposure Assessment of the Static Magnetic Field Generated by Nuclear Magnetic Resonance Spectroscopy: A Case Study. International Journal of Environmental Research and Public Health, 19(13), 7674. https://doi.org/10.3390/ijerph19137674