Exposure to Toxic Metals and Health Risk Assessment through Ingestion of Canned Sardines Sold in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Human Health Risk Assessment
2.3. Comparative Criteria
2.4. Statistical Analysis
3. Results
3.1. Elemental Content in Canned Sardine Samples
3.2. Elemental Distribution
3.3. Human Health Risk Assessment
4. Discussion
4.1. Canned Sardines Elemental Content and Intake Limits
4.2. Health Hazards Considering Elemental Intake through Canned Sardines Sold in Brazil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinzón-Bedoya, C.H.; Pinzón-Bedoya, M.L.; Pinedo-Hernández, J.; Urango-Cardenas, I.; Marrugo-Negrete, J. Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia. Int. J. Environ. Res. Public Health 2020, 17, 2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.; Liao, W.; Yan, Z.; Bai, Y.; Feng, C.; Xu, Z.; Xu, D. Progress in the Research of the Toxicity Effect Mechanisms of Heavy Metals on Freshwater Organisms and Their Water Quality Criteria in China. J. Chem. 2020, 2020, 9010348. [Google Scholar] [CrossRef]
- Hao, Z.; Chen, L.; Wang, C.; Zou, X.; Zheng, F.; Feng, W.; Zhang, D.; Peng, L. Heavy Metal Distribution and Bioaccumulation Ability in Marine Organisms from Coastal Regions of Hainan and Zhoushan, China. Chemosphere 2019, 226, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Alizada, N.; Muzaffar, S.B. Bioaccumulation of Trace Elements in Tissues of Indian Oil Sardine (Sardinella Longiceps) from the Northern United Arab Emirates. Mar. Pollut. Bull. 2020, 161, 111771. [Google Scholar] [CrossRef] [PubMed]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Braga, H.O.; Pardal, M.Â.; da Cruz, R.C.M.; Alvarenga, T.C.; Azeiteiro, U.M. Fishers’ Knowledge in Southeast Brazil: The Case Study of the Brazilian Sardine. Ocean Coast. Manag. 2018, 165, 141–153. [Google Scholar] [CrossRef]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy Metals in Marine Fish Meat and Consumer Health: A Review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Liu, Y.; Zhang, X.; Ravikumar, B.; Bai, G.; Li, X. Studies on Seasonal Pollution of Heavy Metals in Water, Sediment, Fish and Oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 2018, 191, 626–638. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; et al. Human Health and Ocean Pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B. Environmental Science: A Canadian Perspective, 6th ed.; Dalhousie University Libraries Digital Editions: Halifax, NS, Canada, 2018. [Google Scholar]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra Virgin Olive Oil: More than a Healthy Fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Rizzolo, D.A.; Miro, A.; Gomis, R. Prevention of Type 2 Diabetes through Sardines Consumption: An Integrative Review. Food Rev. Int. 2021, 1–19. [Google Scholar] [CrossRef]
- Jayedi, A.; Shab-Bidar, S. Fish Consumption and the Risk of Chronic Disease: An Umbrella Review of Meta-Analyses of Prospective Cohort Studies. Adv. Nutr. 2020, 11, 1123–1133. [Google Scholar] [CrossRef]
- Machate, D.J.; Figueiredo, P.S.; Marcelino, G.; de Cássia Avellaneda Guimarães, R.; Hiane, P.A.; Bogo, D.; Pinheiro, V.A.Z.; de Oliveira, L.C.S.; Pott, A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int. J. Mol. Sci. 2020, 21, 4093. [Google Scholar] [CrossRef] [PubMed]
- Tørris, C.; Småstuen, M.C.; Molin, M. Nutrients in Fish and Possible Associations with Cardiovascular Disease Risk Factors in Metabolic Syndrome. Nutrients 2018, 10, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2020. In Brief: Sustainability in Action; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- FAO. Fishery and Aquaculture Country Profiles. Brazil. Country Profile Fact Sheets. Fisheries and Aquaculture Division. Available online: https://www.fao.org/fishery/en/facp/bra?lang=en (accessed on 13 January 2022).
- de Mello Lazarini, T.E.; Milani, R.F.; Yamashita, D.M.; Saron, E.S.; Morgano, M.A. Canned Sardines Commercialized in Brazil: Packaging and Inorganic Contaminants Evaluation. Food Packag. Shelf Life 2019, 21, 100372. [Google Scholar] [CrossRef]
- Thomsen, S.T.; Assunção, R.; Afonso, C.; Boué, G.; Cardoso, C.; Cubadda, F.; Garre, A.; Kruisselbrink, J.W.; Mantovani, A.; Pitter, J.G.; et al. Human Health Risk–Benefit Assessment of Fish and Other Seafood: A Scoping Review. Crit. Rev. Food Sci. Nutr. 2021, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Long, G.L.; Winefordner, J.D. Limit of Detection. A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- de Lima, N.V.; Granja Arakaki, D.; de Pádua Melo, E.S.; Machate, D.J.; do Nascimento, V.A. Assessment of Trace Elements Supply in Canned Tuna Fish Commercialized for Human Consumption in Brazil. Int. J. Environ. Res. Public Health 2021, 18, 12002. [Google Scholar] [CrossRef] [PubMed]
- de Lima, N.V.; de Pádua Melo, E.S.; Arakaki, D.G.; Tschinkel, P.F.S.; de Souza, I.D.; de Oliveira Ulbrecht, M.O.; Mendes dos Reis, F.J.; Rosa, A.C.G.; Rosa, R.H.; Aragão do Nascimento, V. Data on Metals, Nonmetal, and Metalloid in the Samples of the Canned Tuna and Canned Sardines Sold in Brazil. Data Brief 2021, 35, 106865. [Google Scholar] [CrossRef]
- FDA; USEPA. Technical Information on Development of FDA/EPA Advice about Eating Fish for Those Who Might Become or Are Pregnant or Breastfeeding and Children Ages 1–11 Years; 2021. Available online: https://www.fda.gov/food/metals-and-your-food/technical-information-development-fdaepa-advice-about-eating-fish-those-who-might-become-or-are (accessed on 1 March 2022).
- EFSA. Guidance on Selected Default Values to Be Used by the EFSA Scientific Committee, Scientific Panels and Units in the Absence of Actual Measured Data. EFSA J. 2012, 10, 2579. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2012.2579 (accessed on 29 January 2022). [CrossRef]
- USEPA. Regional Screening Levels (RSLs)—Generic Tables—Summary Table. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 21 January 2022).
- Ali, H.; Khan, E. Bioaccumulation of Non-Essential Hazardous Heavy Metals and Metalloids in Freshwater Fish. Risk to Human Health. Environ. Chem. Lett. 2018, 16, 903–917. [Google Scholar] [CrossRef]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy Metals in Commercial Fish and Seafood Products and Risk Assessment in Adult Population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual. Part A. Interim Report (Final); Part A; Environmental Protection Agency: Washington, DC, USA; Office of Solid Waste: Washington, DC, USA, 1989; Volume 1.
- USEPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Risk Assessment and Fish Consumption Limits, 3rd ed.; USEPA Office of Water, Office of Science and Technology: Washington, DC, USA, 2000; Volume 2.
- USEPA. Integrated Risk Information System (IRIS). Chemical Search. Oral Slope Factor. USEPA. Available online: https://cfpub.epa.gov/ncea/iris/search/ (accessed on 14 January 2022).
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C.; et al. Heavy Metal Contaminations in Herbal Medicines: Determination, Comprehensive Risk Assessments, and Solutions. Front. Pharmacol. 2021, 11, 595335. [Google Scholar] [CrossRef]
- USDOE. The Risk Assessment Information System (RAIS). RAIS Toxicity Values and Physical Parameters Search. Available online: https://rais.ornl.gov/cgi-bin/tools/TOX_search (accessed on 10 March 2022).
- USEPA. Assessing Human Health Risks From Chemically Contaminated Fish And Shellfish. Guidance Manual; USEPA: Washington, DC, USA, 1989.
- National Academies of Sciences. Dietary Reference Intakes (DRIs): Tolerable Upper Intake Levels, Elements, Food and Nutrition Board, National Academies. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545442/table/appJ_tab9/ (accessed on 20 January 2022).
- Agência Nacional de Vigilância Sanitária (ANVISA). Instrução Normativa N° 88, de 26 de Março de 2021, Estabelece os Limites Máximos Tolerados (LMT) de Contaminantes em Alimentos; 2021. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/plano-de-nacional-de-controle-de-residuos-e-contaminantes/instrucao-normativa-2021_88-anvisa.pdf (accessed on 15 January 2022).
- EUROPEAN COMMISSION. Commission Regulation (EC). No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN (accessed on 27 February 2022).
- Safta, M.; Limam, I.; Jebali, R.; Marzouki, M.; Driss, M.R.; Kalfat, R. Monitoring of Metals Migration and Identification of Corrosion Sources in Canned Tomatoes and Sardines. Int. J. Environ. Anal. Chem. 2020, 1–14. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives; World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Fourth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Rome, Italy, 2011.
- Dordevic, D.; Buchtova, H.; Jancikova, S.; Macharackova, B.; Jarosova, M.; Vitez, T.; Kushkevych, I. Aluminum Contamination of Food during Culinary Preparation: Case Study with Aluminum Foil and Consumers’ Preferences. Food Sci. Nutr. 2019, 7, 3349–3360. [Google Scholar] [CrossRef]
- Ghatreh Samani, K.; Farrokhi, E.; Mohandes Samani, N.; Hadiseh Moradi, H. The Effect of Aluminum on the Increasing Risk of Developing Anemia among Workers of Tile Production Plants. Int. J. Epidemiol. Res. 2015, 2, 24–29. [Google Scholar]
- Stahl, T.; Falk, S.; Rohrbeck, A.; Georgii, S.; Herzog, C.; Wiegand, A.; Hotz, S.; Boschek, B.; Zorn, H.; Brunn, H. Migration of Aluminum from Food Contact Materials to Food—A Health Risk for Consumers? Part I of III: Exposure to Aluminum, Release of Aluminum, Tolerable Weekly Intake (TWI), Toxicological Effects of Aluminum, Study Design, and Methods. Environ. Sci. Eur. 2017, 29, 19. [Google Scholar] [CrossRef] [PubMed]
- Inan-Eroglu, E.; Ayaz, A. Is Aluminum Exposure a Risk Factor for Neurological Disorders? J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2018, 23, 51. [Google Scholar] [CrossRef]
- Ikem, A.; Egiebor, N.O. Assessment of Trace Elements in Canned Fishes (Mackerel, Tuna, Salmon, Sardines and Herrings) Marketed in Georgia and Alabama (United States of America). J. Food Compos. Anal. 2005, 18, 771–787. [Google Scholar] [CrossRef]
- Usydus, Z.; Szlinder-Richert, J.; Polak-Juszczak, L.; Kanderska, J.; Adamczyk, M.; Malesa-Ciecwierz, M.; Ruczynska, W. Food of Marine Origin: Between Benefits and Potential Risks. Part I. Canned Fish on the Polish Market. Food Chem. 2008, 111, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Oberoi, S.; Barchowsky, A.; Wu, F. The Global Burden of Disease for Skin, Lung, and Bladder Cancer Caused By Arsenic in Food. Cancer Epidemiol. Prev. Biomark. 2014, 23, 1187–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, Oxidative Stress and Human Disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Williams, P.N.; Nunes, L.; Zhu, Y.-G. Inorganic Arsenic in Chinese Food and Its Cancer Risk. Environ. Int. 2011, 37, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/WHO Expert Committee on Food Additives; World Health Organization; Food and Agriculture Organization of the United Nations. Evaluation of Certain Contaminants in Food: Seventy-Second [72nd] Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011; p. 105.
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- Demont, M.; Boutakhrit, K.; Fekete, V.; Bolle, F.; Van Loco, J. Migration of 18 Trace Elements from Ceramic Food Contact Material: Influence of Pigment, PH, Nature of Acid and Temperature. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 734–743. [Google Scholar] [CrossRef]
- Peana, M.; Medici, S.; Dadar, M.; Zoroddu, M.A.; Pelucelli, A.; Chasapis, C.T.; Bjørklund, G. Environmental Barium: Potential Exposure and Health-Hazards. Arch. Toxicol. 2021, 95, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality: Recommendations, 3rd ed.; World Health Organization: Geneva, Switzerland, 2004; Volume 1, ISBN 978-92-4-154638-6.
- European Commission. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0010&from=FR (accessed on 19 January 2022).
- Tarley, C.R.T.; Coltro, W.K.T.; Matsushita, M.; de Souza, N.E. Characteristic Levels of Some Heavy Metals from Brazilian Canned Sardines (Sardinella Brasiliensis). J. Food Compos. Anal. 2001, 14, 611–617. [Google Scholar] [CrossRef]
- Del Borghi, A.; Gallo, M.; Strazza, C.; Del Borghi, M. An Evaluation of Environmental Sustainability in the Food Industry through Life Cycle Assessment: The Case Study of Tomato Products Supply Chain. J. Clean. Prod. 2014, 78, 121–130. [Google Scholar] [CrossRef]
- Leao, D.J.; Junior, M.M.S.; Brandao, G.C.; Ferreira, S.L.C. Simultaneous Determination of Cadmium, Iron and Tin in Canned Foods Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta 2016, 153, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Filippini, T.; Ajsuvakova, O.P.; Skalnaya, M.G.; Aaseth, J.; Bjørklund, G.; Gatiatulina, E.R.; Popova, E.V.; Nemereshina, O.N.; Huang, P.-T.; et al. Cadmium and Atherosclerosis: A Review of Toxicological Mechanisms and a Meta-Analysis of Epidemiologic Studies. Environ. Res. 2018, 162, 240–260. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R. Determination of the Level of Selected Elements in Canned Meat and Fish and Risk Assessment for Consumer Health. J. Anal. Methods Chem. 2020, 2020, 2148794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Chemicals Agency (ECHA). ANNEX 1. Background Document, in Support of the Committee for Risk Assessment (RAC) Evaluation of Limit Values for Benzene in the Workplace; ECHA: Helsinki, Finland, 2018.
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risks to Public Health Related to the Presence of Nickel in Food and Drinking Water. EFSA J. 2015, 13, 4002. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; et al. Update of the Risk Assessment of Nickel in Food and Drinking Water. EFSA J. 2020, 18, 6268. [Google Scholar] [CrossRef]
- Institute of Medicine. Arsenic, Boron, Nickel, Silicon, and Vanadium; Micronutrients; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- NHS Office of Dietary Supplements—Chromium. Available online: https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/ (accessed on 20 February 2022).
- WHO. JECFA Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=2824 (accessed on 6 October 2020).
- Vincent, J.B. New Evidence against Chromium as an Essential Trace Element. J. Nutr. 2017, 147, 2212–2219. [Google Scholar] [CrossRef] [Green Version]
- DesMarias, T.L.; Costa, M. Mechanisms of Chromium-Induced Toxicity. Curr. Opin. Toxicol. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Gonoodi, K.; Moslem, A.; Darroudi, S.; Ahmadnezhad, M.; Mazloum, Z.; Tayefi, M.; Zadeh, S.A.T.; Eslami, S.; Shafiee, M.; Khashayarmanesh, Z.; et al. Serum and Dietary Zinc and Copper in Iranian Girls. Clin. Biochem. 2018, 54, 25–31. [Google Scholar] [CrossRef]
- Liao, J.; Yang, F.; Chen, H.; Yu, W.; Han, Q.; Li, Y.; Hu, L.; Guo, J.; Pan, J.; Liang, Z.; et al. Effects of Copper on Oxidative Stress and Autophagy in Hypothalamus of Broilers. Ecotoxicol. Environ. Saf. 2019, 185, 109710. [Google Scholar] [CrossRef]
- Mazi, T.A.; Shibata, N.M.; Medici, V. Lipid and Energy Metabolism in Wilson Disease. Liver Res. 2020, 4, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint FAO/WHO Expert Committee on Food Additives; World Health Organization. Evaluation of Certain Food Additives and Contaminants: Twenty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 1982.
- Mattiello, V.; Schmugge, M.; Hengartner, H.; von der Weid, N.; Renella, R. on behalf of the SPOG Pediatric Hematology Working Group Diagnosis and Management of Iron Deficiency in Children with or without Anemia: Consensus Recommendations of the SPOG Pediatric Hematology Working Group. Eur. J. Pediatr. 2020, 179, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Addo, O.Y.; Jefferds, M.E.; Sharma, A.J.; Flores-Ayala, R.C.; Brittenham, G.M. Physiologically Based Serum Ferritin Thresholds for Iron Deficiency in Children and Non-Pregnant Women: A US National Health and Nutrition Examination Surveys (NHANES) Serial Cross-Sectional Study. Lancet Haematol. 2021, 8, e572–e582. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives; World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011.
- Tuzen, M.; Soylak, M. Determination of Trace Metals in Canned Fish Marketed in Turkey. Food Chem. 2007, 101, 1378–1382. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium Intake, Status, and Health: A Complex Relationship. Horm. Athens Greece 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.B.; Sorenson, J.C.; Pollard, E.L.; Kirby, J.K.; Audhya, T. Evidence-Based Recommendations for an Optimal Prenatal Supplement for Women in the U.S., Part Two: Minerals. Nutrients 2021, 13, 1849. [Google Scholar] [CrossRef]
- Schweizer, U.; Bohleber, S.; Zhao, W.; Fradejas-Villar, N. The Neurobiology of Selenium: Looking Back and to the Future. Front. Neurosci. 2021, 15, 177. [Google Scholar] [CrossRef] [PubMed]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised Reference Values for Selenium Intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Knez, M.; Glibetic, M. Zinc as a Biomarker of Cardiovascular Health. Front. Nutr. 2021, 8, 686078. [Google Scholar] [CrossRef]
- Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients 2020, 12, 2358. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, E.L.; Morgano, M.A.; Arisseto-Bragotto, A.P. Occurrence and Determination of Inorganic Contaminants in Baby Food and Infant Formula. Curr. Opin. Food Sci. 2019, 30, 60–66. [Google Scholar] [CrossRef]
- Schaeffer, R.; Soeroes, C.; Ipolyi, I.; Fodor, P.; Thomaidis, N.S. Determination of Arsenic Species in Seafood Samples from the Aegean Sea by Liquid Chromatography–(Photo-Oxidation)–Hydride Generation–Atomic Fluorescence Spectrometry. Anal. Chim. Acta 2005, 547, 109–118. [Google Scholar] [CrossRef]
- Joint FAO/WHO. WHO Food Standards Programme Codex Committee on Contaminants in Foods; FAO/WHO: The Hague, The Netherlands, 2011.
- USEPA. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals); Part B; Environmental Protection Agency: Washington, DC, USA; Office of Solid Waste: Washington, DC, USA, 1991; Volume 1.
Step | Temperature (°C) | Pressure (Bar) | Ramp Time | Hold Time | Power (W) |
---|---|---|---|---|---|
1 | 100 | 30 | 1 | 5 min | 1160 |
2 | 150 | 30 | 1 | 10 min | 1160 |
3 | 50 | 25 | 1 | 1 min | 0 |
Parameter | Setting |
---|---|
RF Power (W) | 1250 |
Sample flow (L min−1) | 0.35 |
Replicates | 3 |
Plasma flow rate (L min−1) | 12 |
Integration time (s) | 5 |
Stabilization time (s) | 20 |
Nebulization pressure(psi) | 30 |
Plasma View | Axial |
Analytes/λ | Al 167.079 nm, As 189.042 nm, Ba 455.403 nm, Cd 228.802 nm, Co 228.616 nm, Cr 283.563 nm, Cu 324.754 nm, Fe 259.940 nm, Ni 221.647 nm, Pb 220.353 nm, Se 196.090 nm, Zn 213.856 nm |
Elements | Calibration Equations | LOD (mg/kg) | LOQ (mg/kg) | R2 |
---|---|---|---|---|
Al | y = 135x − 0.8678 | 0.0044351 | 0.0147838 | 0.9989 |
As | y = 492.89x + 7.4355 | 0.0036706 | 0.0122353 | 0.9993 |
Ba | y = 812,405x + 7228.5 | 0.0001898 | 0.0006326 | 0.9994 |
Cd | y = 14,521x + 54.642 | 0.0006265 | 0.0020884 | 0.9996 |
Co | y = 6264.2x + 80.017 | 0.0009556 | 0.0031855 | 0.9993 |
Cr | y = 14,916x + 38.422 | 0.0008094 | 0.0026981 | 0.9997 |
Cu | y = 16,232x + 184.49 | 0.0017386 | 0.0057954 | 0.9995 |
Fe | y = 11,400x + 101.45 | 0.0169013 | 0.0563375 | 0.9994 |
Ni | y = 5542.7x + 66.307 | 0.0011056 | 0.0036853 | 0.9993 |
Pb | y = 1095.1x + 18.876 | 0.0050957 | 0.0169856 | 0.9994 |
Se | y = 376.77x + 5.7012 | 0.0052757 | 0.0175856 | 0.9994 |
Zn | y = 10,918x + 127.6 | 0.0031463 | 0.0104878 | 0.9994 |
Elements | Sardine in Oil (SO) mg/Tin 84 g | Sardine in Tomato Sauce (ST) mg/Tin 84 g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SO-G | SO-C | SO-O | SO-P | SO-Pa | ST-G | ST-C | ST-O | ST-P | ST-Pa | p-Value | |
Al | 0.002 a,b ± 0.0002 | 0.0003 a ± 0.00002 | 0.002 a,b ± 0.0004 | 0.0008 a,b ± 0.0005 | 0.003 b ± 0.0002 | 0.002 a,b ± 0.0004 | 0.001 a,b ± 0.0002 | 0.008 c ± 0.0017 | 0.001 a,b ± 0.0001 | 0.002 a,b ± 0.0004 | <0.0001 |
As | 0.271 a,b ± 0.0091 | 0.256 a,b ± 0.0292 | 0.258 a,b ± 0.0189 | 0.377 b ± 0.0325 | 0.261 a,b ± 0.0271 | 0.318 a,b ± 0.0021 a | 0.323 a,b ± 0.0038 a | 0.224 a ± 0.0612 | 0.281 a,b ± 0.0142 | 0.207 a ± 0.0224 | 0.0146 |
Ba | 0.037 a ± 0.0005 | 0.031 a ± 0.0145 | 0.033 a ± 0.0081 | 0.048 a ± 0.0004 | 0.020 a ± 0.0017 | 0.063 a ± 0.0202 | 0.061 a ± 0.0001 | 0.050 a ± 0.0291 | 0.066 a ± 0.0037 | 0.137 b ± 0.0007 | <0.0001 |
Cd | 0.00003 a ± 0.00001 | 0.00004 a ± 0.00002 | 0.00003 a ± 0.000001 | 0.00004 a ± 0.0000005 | <LOD | 0.00006 a ± 0.0001 | <LOD | 0.00002 a ± 0.0001 | <LOD | 0.002 b ± 0.00004 | <0.0001 |
Cr | 0.0015 ± 0.0002 | 0.001 ± 0.0018 | 0.002 ± 0.0013 | 0.002 ± 0.0009 | 0.001 ± 0.0007 | 0.0005 ± 0.0009 | 0.0009 ± 0.0015 | 0.001 ± 0.0010 | <LOD | 0.0003 ± 0.0040 | 0.9409 |
Cu | 0.066 a ± 0.0099 | 0.054 a ± 0.0054 | 0.062 a ± 0.0001 | 0.220 b ± 0.0195 | 0.095 a,b ± 0.0152 | 0.092 a,b ± 0.0014 | 0.113 a,b ± 0.0261 | 0.062 a ± 0.0847 | 0.083 a,b ± 0.0182 | 0.099 a,b ± 0.0333 | 0.0261 |
Fe | 2.320 ± 0.1423 | 1.466 ± 0.0833 | 1.996 ± 0.0487 | 2.820 ± 0.2194 | 1.945 ± 0.1648 | 2.611 ± 0.2045 | 2.568 ± 0.2962 | 3.507 ± 1.9340 | 1.463 ± 0.4138 | 1.827 ± 0.6371 | 0.1821 |
Ni | <LOD | 0.009 ± 0.0170 | <LOD | <LOD | <LOD | <LOD | <LOD | 0.0002 ± 0.0084 | <LOD | <LOD | >0.9999 |
Pb | 0.0004 a ± 0.0001 | 0.0007 b ± 0.0006 | 0.0004 a ± 0.0002 | 0.0008 a ± 0.00003 | 0.00007 a ± 0.00001 | 0.0003 a ± 0.0002 | 0.0004 a ± 0.0002 | 0.0009 a ± 0.0012 | 0.0001 a ± 0.00002 | 0.0003 a ± 0.0003 | <0.0001 |
Se | 0.182 ± 0.0051 | 0.191 ± 0.0160 | 0.183 ± 0.0094 | 0.200 ± 0.0101 | 0.172 ± 0.0092 | 0.167 ± 0.0185 | 0.175 ± 0.0300 | 0.203 ± 0.0707 | 0.157 ± 0.0099 | 0.176 ± 0.0186 | 0.7933 |
Zn | 0.036 ± 0.0055 | 0.027 ± 0.0060 | 0.029 ± 0.0053 | 0.039 ± 0.0016 | 0.017 ± 0.0006 | 0.033 ± 0.0026 | 0.038 ± 0.0095 | 0.033 ± 0.0119 | 0.020 ± 0.0029 | 0.023 ± 0.0055 | 0.0458 |
Elements | Sample | Carcinogenic Risk (CR) | |||
---|---|---|---|---|---|
Toddlers (Aged 1–3 Years) | Children (Aged 3–10 Years) | Adolescents (Aged 10–18 Years) | Adults (Aged > 18–65 Years) | ||
Arsenic | SO-G | 1.45 × 10−2 | 7.52 × 10−3 | 3.34 × 10−3 | 2.48 × 10−3 |
SO-C | 1.37 × 10−2 | 7.10 × 10−3 | 3.16 × 10−3 | 2.34 × 10−3 | |
SO-O | 1.38 × 10−2 | 7.16 × 10−3 | 3.18 × 10−3 | 2.36 × 10−3 | |
SO-P | 2.01 × 10−2 | 1.05 × 10−2 | 4.65 × 10−3 | 3.45 × 10−3 | |
SO-Pa | 1.39 × 10−2 | 7.24 × 10−3 | 3.22 × 10−3 | 2.39 × 10−3 | |
ST-G | 1.70 × 10−2 | 8.83 × 10−3 | 3.92 × 10−3 | 2.91 × 10−3 | |
ST-C | 1.73 × 10−2 | 8.96 × 10−3 | 3.98 × 10−3 | 2.96 × 10−3 | |
ST-O | 1.20 × 10−2 | 6.22 × 10−3 | 2.76 × 10−3 | 2.05 × 10−3 | |
ST-P | 1.50 × 10−2 | 7.80 × 10−3 | 3.46 × 10−3 | 2.57 × 10−3 | |
ST-Pa | 1.11 × 10−2 | 5.74 × 10−3 | 2.55 × 10−3 | 1.90 × 10−3 | |
Cadmium | SO-G | 6.52 × 10−6 | 3.39 × 10−6 | 1.50 × 10−6 | 1.12 × 10−6 |
SO-C | 8.69 × 10−6 | 4.51 × 10−6 | 2.01 × 10−6 | 1.49 × 10−6 | |
SO-O | 6.52 × 10−6 | 3.39 × 10−6 | 1.50 × 10−6 | 1.12 × 10−6 | |
SO-P | 8.69 × 10−6 | 4.51 × 10−6 | 2.01 × 10−6 | 1.49 × 10−6 | |
SO-Pa | - | - | - | - | |
ST-G | 1.3 × 10−5 | 6.77 × 10−6 | 3.01 × 10−6 | 2.23 × 10−6 | |
ST-C | - | - | - | - | |
ST-O | 4.35 × 10−6 | 2.26 × 10−6 | 1.00 × 10−6 | 7.45 × 10−7 | |
ST-P | - | - | - | - | |
ST-Pa | 4.35 × 10−4 | 2.26 × 10−4 | 1.00 × 10−4 | 7.45 × 10−5 | |
Chromium | SO-G | 2.67 × 10−5 | 1.40 × 10−5 | 6.16 × 10−6 | 4.58 × 10−6 |
SO-C | 1.83 × 10−5 | 9.50 × 10−6 | 4.23 × 10−6 | 3.14 × 10−6 | |
SO-O | 4.27 × 10−5 | 2.20 × 10−5 | 9.86 × 10−6 | 7.33 × 10−6 | |
SO-P | 3.56 × 10−5 | 1.90 × 10−5 | 8.22 × 10−6 | 6.11 × 10−6 | |
SO-Pa | 1.78 × 10−5 | 9.30 × 10−6 | 4.11 × 10−6 | 3.05 × 10−6 | |
ST-G | 8.9 × 10−6 | 4.60 × 10−6 | 2.05 × 10−6 | 1.53 × 10−6 | |
ST-C | 1.6 × 10−5 | 8.30 × 10−6 | 3.70 × 10−6 | 2.75 × 10−6 | |
ST-O | 2.15 × 10−5 | 1.10 × 10−5 | 4.97 × 10−6 | 3.69 × 10−6 | |
ST-P | - | - | - | - | |
ST-Pa | 5.93 × 10−6 | 3.10 × 10−6 | 1.37 × 10−6 | 1.02 × 10−6 | |
Lead | SO-G | 1.21 × 10−7 | 6.30 × 10−8 | 2.79 × 10−8 | 2.08 × 10−8 |
SO-C | 2.12 × 10−7 | 1.10 × 10−7 | 4.89 × 10−8 | 3.63 × 10−8 | |
SO-O | 1.21 × 10−7 | 6.30 × 10−8 | 2.79 × 10−8 | 2.08 × 10−8 | |
SO-P | 2.42 × 10−7 | 1.30 × 10−7 | 5.59 × 10−8 | 4.15 × 10−8 | |
SO-Pa | 2.12 × 10−8 | 1.10 × 10−8 | 4.89 × 10−9 | 3.63 × 10−9 | |
ST-G | 9.08 × 10−8 | 4.70 × 10−8 | 2.10 × 10−8 | 1.56 × 10−8 | |
ST-C | 1.21 × 10−7 | 6.30 × 10−8 | 2.79 × 10−8 | 2.08 × 10−8 | |
ST-O | 2.72 × 10−7 | 1.40 × 10−7 | 6.29 × 10−8 | 4.67 × 10−8 | |
ST-P | 3.03 × 10−8 | 1.60 × 10−8 | 6.99 × 10−9 | 5.19 × 10−9 | |
ST-Pa | 9.08 × 10−8 | 4.70 × 10−8 | 2.10 × 10−8 | 1.56 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, L.C.S.; de Lima, N.V.; Melo, E.S.d.P.; Cardozo, C.M.L.; do Nascimento, V.A. Exposure to Toxic Metals and Health Risk Assessment through Ingestion of Canned Sardines Sold in Brazil. Int. J. Environ. Res. Public Health 2022, 19, 7678. https://doi.org/10.3390/ijerph19137678
Leite LCS, de Lima NV, Melo ESdP, Cardozo CML, do Nascimento VA. Exposure to Toxic Metals and Health Risk Assessment through Ingestion of Canned Sardines Sold in Brazil. International Journal of Environmental Research and Public Health. 2022; 19(13):7678. https://doi.org/10.3390/ijerph19137678
Chicago/Turabian StyleLeite, Luana Carolina Santos, Nayara Vieira de Lima, Elaine Silva de Pádua Melo, Carla Maiara Lopes Cardozo, and Valter Aragão do Nascimento. 2022. "Exposure to Toxic Metals and Health Risk Assessment through Ingestion of Canned Sardines Sold in Brazil" International Journal of Environmental Research and Public Health 19, no. 13: 7678. https://doi.org/10.3390/ijerph19137678
APA StyleLeite, L. C. S., de Lima, N. V., Melo, E. S. d. P., Cardozo, C. M. L., & do Nascimento, V. A. (2022). Exposure to Toxic Metals and Health Risk Assessment through Ingestion of Canned Sardines Sold in Brazil. International Journal of Environmental Research and Public Health, 19(13), 7678. https://doi.org/10.3390/ijerph19137678