Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Testing
2.3. Methods
2.3.1. Water Quality Evaluation
2.3.2. The APCS/MLR Model
2.3.3. Health Risk Assessment
2.3.4. Monte Carlo Simulation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Pollution Characterization of Heavy Metals
3.2. Pollution Level of Heavy Metals
3.3. Source Apportionment of Heavy Metals
3.4. Probabilistic Health Risks Assessment
3.4.1. Concentration-Oriented Health Risk Assessment
3.4.2. Source-Oriented Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekki, I.; Jacob, F.; Marlet, S.; Ghazouani, W. Management of groundwater resources in relation to oasis sustainability: The case of the Nefzawa region in Tunisia. J. Environ. Manag. 2013, 121, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, H.; Ding, Y.; Chen, W.; Luo, J.; Li, H.; Wu, J.; Chen, W.; Qi, S. Trace metals in aquatic environments of a mangrove ecosystem in Nansha, Guangzhou, South China: Pollution status, sources, and ecological risk assessment. Environ. Monit. Assess. 2019, 191, 629. [Google Scholar] [CrossRef] [PubMed]
- Hintze, S.; Glauser, G.; Hunkeler, D. Influence of surface water–groundwater interactions on the spatial distribution of pesticide metabolites in groundwater. Sci. Total Environ. 2020, 733, 139109. [Google Scholar] [CrossRef]
- Wen, X.; Lu, J.; Wu, J.; Lin, Y.; Luo, Y. Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Sci. Total Environ. 2019, 652, 267–277. [Google Scholar] [CrossRef]
- Pan, Y.; Peng, H.; Xie, S.; Zeng, M.; Huang, C. Eight elements in soils from a typical light industrial city, China: Spatial distribution, ecological assessment, and the source apportionment. Int. J. Environ. Res. Public Health 2019, 16, 2591. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Qi, S.; Wu, C.; Ke, Y.; Chen, J.; Chen, W.; Gong, X. Preliminary assessment of heavy metal contamination in surface water and sediments from Honghu Lake, East Central China. Front. Earth. Sci. 2012, 6, 39–47. [Google Scholar] [CrossRef]
- Lu, A.X.; Li, B.R.; Li, J.; Chen, W.; Xu, L. Heavy metals in paddy soil-rice systems of industrial and township areas from subtropical China: Levels, transfer and health risks. J. Geochem. Explor. 2018, 194, 210–217. [Google Scholar] [CrossRef]
- Pandey, J.; Shubhashish, K.; Pandey, R. Heavy metal contamination of Ganga river at Varanasi in relation to atmospheric deposition. Trop. Ecol. 2010, 51, 365–373. [Google Scholar]
- Skröder, H.; Hawkesworth, S.; Kippler, M.; El Arifeen, S.; Wagatsuma, Y.; Moore, S.E.; Vahter, M. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic-potential alleviation by selenium. Environ. Res. 2015, 140, 205–213. [Google Scholar] [CrossRef]
- Gerlach, R.F.; Cury, J.A.; Krug, F.J.; Line, S.R. Effect of lead on dental enamel formation. Toxicology 2002, 175, 27–34. [Google Scholar] [CrossRef]
- Rashid, A.; Khan, S.; Ayub, M.; Sardar, T.; Jehan, S.; Zahir, S.; Khan, M.S.; Muhammad, J.; Khan, R.; Ali, A.; et al. Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system. Chemosphere 2019, 225, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Chonokhuu, S.; Batbold, C.; Chuluunpurev, B.; Battsengel, E.; Dorjsuren, B.; Byambaa, B. Contamination and health risk assessment of heavy metals in the soil of major cities in Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, R.; Zhou, B.; Chen, H. Spatio-temporal distribution of environmental health risk of heavy metals in industrial Wastewater of China during 1999–2018. Int. J. Environ. Res. Public Health 2021, 18, 5920. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Wang, G.; Shi, Z.; Huang, X.; Xu, F.; Xu, Q.; Guo, L. Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the Poyang Lake, East China. Expos. Health 2018, 10, 211–227. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Liu, C.; Lu, J.; Qin, Y.; Mo, Y.; Xiao, P.; Liu, Y. Quantitative source identification and apportionment of heavy metals under two different land use types: Comparison of two receptor models APCS-MLR and PMF. Environ. Sci. Pollut. R. 2020, 27, 42996–43010. [Google Scholar] [CrossRef]
- Jin, G.; Fang, W.; Shafi, M.; Wu, D.; Li, Y.; Zhong, B.; Ma, J.; Liu, D. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China. Ecotox. Environ. Saf. 2019, 184, 109495. [Google Scholar] [CrossRef]
- Lv, J. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2019, 244, 72–83. [Google Scholar] [CrossRef]
- Song, Y.; Li, H.; Li, J.; Mao, C.; Ji, J.; Yuan, X.; Li, T.; Ayoko, G.A.; Frost, R.L.; Feng, Y. Multivariate linear regression model for source apportionment and health risk assessment of heavy metals from different environmental media. Ecotox. Environ. Saf. 2018, 165, 555–563. [Google Scholar] [CrossRef]
- Proshad, R.; Kormoker, T.; Abdullah Al, M.; Islam, M.S.; Khadka, S.; Idris, A.M. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022, 423, 127030. [Google Scholar] [CrossRef]
- Peng, C.; Chen, W.; Liao, X.; Wang, M.; Ouyang, Z.; Jiao, W.; Bai, Y. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhao, M.; Huang, J.; Liu, Y.; Wu, Y.; Cai, B.; Han, Z.; Huang, H.; Fan, Z. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment. J. Hazard. Mater. 2022, 423, 127116. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Cai, Y.; Wang, T.; Xiao, R.; Chen, W. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Sci. Rep. 2016, 6, 37084. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, F.; Omidi, F.; Fallahzadeh, R.A.; Pourhassan, B. Health risk assessment of occupational exposure to heavy metals in a steel casting unit of a steelmaking plant using Monte–Carlo simulation technique. Toxicol. Ind. Health 2021, 37, 431–440. [Google Scholar] [CrossRef]
- Ginsberg, G.L.; Belleggia, G. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust. Environ. Int. 2017, 109, 101–113. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, Y.; Yu, R.; Hu, G. The sources-specific health risk assessment combined with APCS/MLR model for heavy metals in tea garden soils from south Fujian Province, China. Catena 2021, 203, 105306. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, Q.; Zheng, L.; Chen, X.; Li, C.; Ren, M. Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities, China. Ecotox. Environ. Saf. 2021, 224, 112679. [Google Scholar] [CrossRef]
- Panda, G.; Pobi, K.K.; Gangopadhyay, S.; Gope, M.; Rai, A.K.; Nayek, S. Contamination level, source identification and health risk evaluation of potentially toxic elements (PTEs) in groundwater of an industrial city in eastern India. Environ. Geochem. Health 2021, 44, 1–25. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Githaiga, K.B.; Njuguna, S.M.; Gituru, R.W.; Yan, X. Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya. J. Envirn. Manag. 2021, 297, 113410. [Google Scholar] [CrossRef] [PubMed]
- General Administration of Quality Supervision. I.Q.O.C. Standards for Groundwater Quality (GB/T 14848-2017); Standards Press of China: Beijing, China, 2017.
- Dippong, T.; Hoaghia, M.; Mihali, C.; Cical, E.; Calugaru, M. Human health risk assessment of some bottled waters from Romania. Environ. Pollut. 2020, 267, 115409. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Tai, L.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.; Chen, G. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci. Total Environ. 2018, 631–632, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef]
- USEPA. Risk assessment guidance for superfund. In Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment, Vol. 1; U.S. Environment Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Karami, M.A.; Fakhri, Y.; Rezania, S.; Alinejad, A.A.; Mohammadi, A.A.; Yousefi, M.; Ghaderpoori, M.; Saghi, M.H.; Ahmadpour, M. Non-Carcinogenic Health Risk Assessment due to Fluoride Exposure from Tea Consumption in Iran Using Monte Carlo Simulation. Int. J. Environ. Res. Pub. Health 2019, 16, 4261. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, Y.J.; Liu, Y.; Liu, Z.; Zhang, A.N. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotox. Environ. Saf. 2018, 164, 261–269. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G.; Guo, M.; Xiao, L.; Huang, W. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ. Pollut. 2017, 223, 560–566. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- HNBS. Hainan Statistical Yearbook in 2016; Hainan Bureau of Statistics: Hainan, China, 2016.
- Sales De Carvalho, V.; Ferreira Dos Santos, I.; Almeida, L.C.; Tavares De Souza, C.; Balbino Da Silva Júnior, J.; Souza, L.A.; Dos Santos, L.O.; Ferreira, S.L.C. Spatio-temporal assessment, sources and health risks of water pollutants at trace levels in public supply river using multivariate statistical techniques. Chemosphere 2021, 282, 130942. [Google Scholar] [CrossRef]
- Wang, S.; Cai, L.; Wen, H.; Luo, J.; Wang, Q.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Varol, M. Arsenic and trace metals in a large reservoir: Seasonal and spatial variations, source identification and risk assessment for both residential and recreational users. Chemosphere 2019, 228, 1–8. [Google Scholar] [CrossRef]
- Varol, M.; Tokatlı, C. Seasonal variations of toxic metal(loid)s in groundwater collected from an intensive agricultural area in northwestern Turkey and associated health risk assessment. Environ. Res. 2022, 204, 111922. [Google Scholar] [CrossRef]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Appraisal of heavy metal contents in groundwater and associated health hazards posed to human population of Ropar wetland, Punjab, India and its environs. Chemosphere 2019, 227, 179–190. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K.; Singh, R.P.; Anshumali; Kumari, D.; Jha, P.K.; Mehta, P. Characterization of heavy metal pollution in an anthropogenically and geologically influenced semi-arid region of east India and assessment of ecological and human health risks. Sci. Total Environ. 2020, 705, 135801. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.H.; Alinejad, A.; Yousefi, M.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 2019, 6, 1642–1651. [Google Scholar] [CrossRef]
- Nilkarnjanakul, W.; Watchalayann, P.; Chotpantarat, S. Spatial distribution and health risk assessment of As and Pb contamination in the groundwater of Rayong Province, Thailand. Environ. Res. 2022, 204, 111838. [Google Scholar] [CrossRef]
- Egbueri, J.C. Heavy metals pollution source identification and probabilistic health Risk Assessment of Shallow Groundwater in Onitsha, Nigeria. Anal. Lett. 2020, 53, 1620–1638. [Google Scholar] [CrossRef]
- MEP. Highlights of the Chinese Exposure Factors Handbook (Adults); China Environmental Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- MEP. Highlights of the Chinese Exposure Factors Handbook (Children); China Environmental Science Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Ngo, H.T.T.; Watchalayann, P.; Nguyen, D.B.; Doan, H.N.; Liang, L. Environmental health risk assessment of heavy metal exposure among children living in an informal e-waste processing village in Viet Na. Sci. Total Environ. 2021, 763, 142982. [Google Scholar] [CrossRef]
- Zeng, G.; Liang, J.; Guo, S.; Shi, L.; Xiang, L.; Li, X.; Du, C. Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China. Chemosphere 2009, 77, 368–375. [Google Scholar] [CrossRef]
- Duan, X. Research Methods of Exposure Factors and Its Application in Environmental Health Risk Assessment; Science Press: Beijing, China, 2012. [Google Scholar]
- USEPA. Quantitative Uncertainty Analysis of Superfund Residential Risk Pathway Models for Soil and Groundwater: White Paper; U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
Min | Max | Mean | SD | CV/% | Skewness | Kurtosis | Guide value | |
---|---|---|---|---|---|---|---|---|
Cr | 1.69 | 16 | 6.52 | 3.12 | 47.8 | 0.93 | 1.1 | 50 |
Mn | 0.01 | 3.2 × 103 | 175 | 572 | 326 | 4.46 | 19.8 | 100 |
Fe | 1.7 | 625 | 36.6 | 88.9 | 243 | 5.55 | 34.3 | 300 |
Cu | 0.15 | 7.85 | 1.57 | 1.46 | 92.7 | 2.52 | 7.57 | 1.0 × 103 |
Zn | 1.66 | 137 | 22.9 | 28 | 122 | 2.58 | 6.83 | 1.0 × 103 |
Cd | 0 | 0.32 | 0.05 | 0.07 | 149 | 2.78 | 7.7 | 5 |
Pb | 0.02 | 12.9 | 2.17 | 3.59 | 165 | 1.82 | 2.04 | 100 |
Risk | Metal | Mean (Median) | SD | 95% CI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Adult Males | Adult Females | Children | Adult Males | Adult Females | Children | Adult Males | Adult Females | Children | ||
HQ | Cr | 2.56 × 10−2 (2.45 × 10−2) | 5.17 × 10−2 (5.09 × 10−2) | 6.34 × 10−2 (6.32 × 10−2) | 1.58 × 10−2 | 1.13 × 10−2 | 1.23 × 10−2 | (2.53 × 10−2, 2.59 × 10−2) | (5.15 × 10−2, 5.19 × 10−2) | (6.31 × 10−2, 6.36 × 10−2) |
Mn | 1.29 × 10−2 (1.24 × 10−2) | 2.64 × 10−2 (2.60 × 10−2) | 3.15 × 10−2 (3.14 × 10−2) | 8.03 × 10−3 | 5.87 × 10−3 | 6.31 × 10−3 | (1.28 × 10−2, 1.31 × 10−2) | (2.63 × 10−2, 2.65 × 10−2) | (3.14 × 10−2, 3.16 × 10−2) | |
Fe | 5.24 × 10−4 (5.01 × 10−4) | 1.07 × 10−3 (1.06 × 10−3) | 1.27 × 10−3 (1.27 × 10−3) | 3.26 × 10−4 | 2.40 × 10−4 | 2.57 × 10−4 | (5.18 × 10−4, 5.31 × 10−4) | (1.07 × 10−3, 1.08 × 10−3) | (1.27 × 10−3, 1.28 × 10−3) | |
Cu | 3.92 × 10−4 (3.74 × 10−4) | 8.02 × 10−4 (7.90 × 10−4) | 9.51 × 10−4 (9.47 × 10−4) | 2.44 × 10−4 | 1.80 × 10−4 | 1.92 × 10−4 | (3.87 × 10−4, 3.97 × 10−4) | (7.98 × 10−4, 8.05 × 10−4) | (9.47 × 10−4, 9.55 × 10−4) | |
Zn | 7.64 × 10−4 (7.29 × 10−4) | 1.56 × 10−3 (1.54 × 10−3) | 1.85 × 10−3 (1.84 × 10−3) | 4.75 × 10−4 | 3.50 × 10−4 | 3.75 × 10−4 | (7.55 × 10−4, 7.73 × 10−4) | (1.56 × 10−3, 1.57 × 10−3) | (1.84 × 10−3, 1.86 × 10−3) | |
Cd | 1.04 × 10−3 (9.94 × 10−4) | 2.12 × 10−3 (2.08 × 10−3) | 2.53 × 10−3 (2.52 × 10−3) | 6.45 × 10−4 | 4.71 × 10−4 | 5.06 × 10−4 | (1.03 × 10−3, 1.05 × 10−3) | (2.11 × 10−3, 2.13 × 10−3) | (2.52 × 10−3, 2.54 × 10−3) | |
Pb | 1.54 × 10−2 (1.47 × 10−2) | 3.15 × 10−2 (3.10 × 10−2) | 3.73 × 10−2 (3.71 × 10−2) | 9.56 × 10−3 | 7.06 × 10−3 | 7.55 × 10−3 | (1.52 × 10−2, 1.56 × 10−2) | (3.13 × 10−2, 3.16 × 10−2) | (3.71 × 10−2, 3.74 × 10−2) | |
HI | Total | 5.66 × 10−2 (5.42 × 10−2) | 1.15 × 10−1 (1.13 × 10−1) | 1.39 × 10−1 (1.38 × 10−1) | 3.51 × 10−2 | 2.54 × 10−2 | 2.75 × 10−2 | (5.59 × 10−2, 5.73 × 10−2) | (1.15 × 10−1, 1.16 × 10−1) | (1.38 × 10−1, 1.39 × 10−1) |
ILCR | Cr | 1.62 × 10−5 (1.55 × 10−5) | 3.32 × 10−5 (3.27 × 10−5) | 7.87 × 10−6 (7.83 × 10−6) | 1.01 × 10−5 | 7.45 × 10−6 | 1.59 × 10−6 | (1.60 × 10−5, 1.64 × 10−5) | (3.31 × 10−5, 3.34 × 10−5) | (7.84 × 10−6, 7.90 × 10−6) |
Cd | 1.20 × 10−9 (1.14 × 10−9) | 2.44 × 10−9 (2.41 × 10−9) | 5.83 × 10−10 (5.81 × 10−10) | 7.44 × 10−10 | 5.44 × 10−10 | 1.17 × 10−10 | (1.18 × 10−9, 1.21 × 10−9) | (2.43 × 10−9, 2.45 × 10−9) | (5.81 × 10−10, 5.85 × 10−10) | |
Pb | 1.12 × 10−9 (1.07 × 10−9) | 2.29 × 10−9 (2.26 × 10−9) | 5.43 × 10−10 (5.40 × 10−10) | 6.97 × 10−10 | 5.14 × 10−10 | 1.10 × 10−10 | (1.11 × 10−9, 1.13 × 10−9) | (2.28 × 10−9, 2.30 × 10−9) | (5.41 × 10−10, 5.45 × 10−10) | |
TCR | Total | 1.62 × 10−5 (1.55 × 10−5) | 3.32 × 10−5 (3.27 × 10−5) | 7.87 × 10−6 (7.83 × 10−6) | 1.01 × 10−5 | 7.45 × 10−6 | 1.59 × 10−6 | (1.60 × 10−5, 1.64 × 10−5) | (3.31 × 10−5, 3.34 × 10−5) | (7.84 × 10−6, 7.90 × 10−6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Zeng, M.; Peng, H.; Huang, C.; Sun, H.; Hou, Q.; Pi, P. Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model. Int. J. Environ. Res. Public Health 2022, 19, 7827. https://doi.org/10.3390/ijerph19137827
Shi H, Zeng M, Peng H, Huang C, Sun H, Hou Q, Pi P. Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model. International Journal of Environmental Research and Public Health. 2022; 19(13):7827. https://doi.org/10.3390/ijerph19137827
Chicago/Turabian StyleShi, Huanhuan, Min Zeng, Hongxia Peng, Changsheng Huang, Huimin Sun, Qingqin Hou, and Pengcheng Pi. 2022. "Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model" International Journal of Environmental Research and Public Health 19, no. 13: 7827. https://doi.org/10.3390/ijerph19137827
APA StyleShi, H., Zeng, M., Peng, H., Huang, C., Sun, H., Hou, Q., & Pi, P. (2022). Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model. International Journal of Environmental Research and Public Health, 19(13), 7827. https://doi.org/10.3390/ijerph19137827