Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Construction of TRPA1 Gene Knockout (TRPA1-KO) A549 Cells
2.3. Cell Cultures and Treatment
2.4. Cell Viability Assay
2.5. Cytotoxicity Assay
2.6. Real-Time Quantitative PCR (RT-qPCR)
2.7. Cellular Calcium Imaging
2.8. Two-Stage Mass Spectrometry (MS/MS) Analysis
2.9. Localized Surface Plasmon Resonance (LSPR) Analysis
2.10. Molecular Docking
2.11. Statistical Analysis
3. Results
3.1. Construction of the TRPA1-KO A549 Cell Line
3.2. AHs Cytotoxicity towards A549 Cells
3.2.1. AHs Treatment Decreases the Viability of A549 Cells
3.2.2. AHs Are Cytotoxic to A549 Cells
3.2.3. AHs Treatment Increased TRPA1 mRNA Expression in A549 Cells
3.3. Exploring the Target of AHs in A549 Cells
3.3.1. AHs Treatment Increased TRPA1 mRNA Expression in A549 Cells, Which Is Reversed by HC-030031 Intervention or TRPA1-KO
3.3.2. Viability of AHs-Treated A549 Cells Is Increased with HC-030031 Intervention or TRPA1-KO
3.3.3. Calcium Influx in AHs-Treated A549 Cells Is Decreased with HC-030031 Intervention or TRPA1-KO
3.4. Molecular Mechanism of TRPA1-AHs Interaction
3.4.1. MS/MS Results
3.4.2. Affinity of hTRPA1 for AHs
3.4.3. Common Mechanism of hTRPA1-AHs Interactions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Coleman, N.V.; Rich, D.J.; Tang, F.H.; Vervoort, R.W.; Maggi, F. Biodegradation and Abiotic Degradation of Trifluralin: A Commonly Used Herbicide with a Poorly Understood Environmental Fate. Environ. Sci. Technol. 2020, 54, 10399–10410. [Google Scholar] [CrossRef] [PubMed]
- Karl, G. Cleaning up pollutants to protect future health. Nature 2018, 555, S20–S22. [Google Scholar]
- Soto, A.M.; Sonnenschein, C. Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 2010, 6, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Cowan, F.M.; Broomfield, C.A.; Stojiljkovic, M.P.; Smith, W.J. A Review of Multi-Threat Medical Countermeasures against Chemical Warfare and Terrorism. Mil. Med. 2004, 169, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Throckmorton, D.C.; Volkow, N.; Platoff, G.; Amaya, K.; Laney, J. Multi-agency development of medical countermeasures against opio-induced respiratory depression. Clin. Pharmacol. Ther. 2020, 109, 576–577. [Google Scholar] [CrossRef] [PubMed]
- Cowan, F.M.; Smith, W.J.; Moran, T.S.; Paris, M.M.; Williams, A.B.; Sciuto, A.M. Sulfur mustard- and phosgene- increased IL-8 in human small airway cell cultures: Implications for medical countermeasures against inhalation toxicity. Cell Biol. Toxicol. 2005, 18, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.B.; Kolodziejczyk, K.; Kougioumtzidou, E.; Ttwell, D.A. Proton-gated Ca2+-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nature 2016, 529, 523–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordt, S.E.; Bautista, D.M.; Chuang, H.H.; McKemy, D.D.; Zygmunt, P.M.; Högestätt, E.D.; Meng, I.D.; Julius, D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427, 260–265. [Google Scholar] [CrossRef]
- Macpherson, L.J.; Dubin, A.E.; Evans, M.J.; Marr, F.; Schultz, P.G.; Cravatt, B.F.; Patapoutian, A. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 2007, 445, 541–545. [Google Scholar] [CrossRef]
- Deng, L.J.; Ma, P.; Wu, Y.; Ma, Y.S.; Yang, X.; Li, Y.G.; Deng, Q.H. High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model. Environ. Pollut. 2019, 256, 113433. [Google Scholar] [CrossRef]
- Duan, J.F.; Xie, J.; Deng, T.; Xie, X.; Liu, H.; Li, B.; Chen, M. Exposure to both formaldehyde and high relative humidity exacerbates allergic asthma by activating the TRPV4-p38 MAPK pathway in Balb/c mice. Environ. Pollut. 2019, 256, 113375. [Google Scholar] [CrossRef] [PubMed]
- Kiss, F.; Kormos, V.; Szőke, É.; Kecskés, A.; Tóth, N.; Steib, A.; Szállási, Á.; Scheich, B.; Gaszner, B.; Kun, J.; et al. Functional Transient Receptor Potential Ankyrin 1 and Vanilloid 1 Ion Channels Are Overexpressed in Human Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 1921. [Google Scholar] [CrossRef] [PubMed]
- Stueber, T.; Eberhardt, M.J.; Caspi, Y.; Lev, S.; Binshtok, A.; Leffler, A. Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels TRPV1 and TRPA1. Cell Calcium 2017, 68, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Landini, L.; de Araujo, D.S.M.; Titiz, M.; Geppetti, P.; Nassini, R.; de Logu, F. TRPA1 Role in Inflammatory Disorders: What Is Known So Far? Int. J. Mol. Sci. 2022, 23, 4529. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, X.; Barreiro, E.; Bustamante, V.; Lopez-Campos, J.L.; González-Barcala, F.J.; Cruz, M.J. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci. Total Environ. 2018, 652, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Naert, R.; López-Requena, A.; Talavera, K. TRPA1 Expression and Pathophysiology in Immune Cells. Int. J. Mol. Sci. 2021, 22, 11460. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, C.E.; Armache, J.P.; Gao, Y.; Cheng, Y.; Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 2015, 520, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Syed, R.S.; Reid, S.W.; Li, C.; Cheetham, J.C.; Stroud, R.M. Efficiency of signaling through cytokine receptors depends critically on receptor orientation. Nature 1998, 395, 511–516. [Google Scholar] [CrossRef] [PubMed]
- De Malfatti, A.L.R.; Mallmann, G.C.; Filho, L.C.L.O.; Carniel, L.S.C.; Cruz, S.P.; Klauberg-Filho, O. Ecotoxicological test to assess effects of herbicides on spore germination of Rhizophagus clarus and Gigaspora albida. Ecotoxicol. Environ. Saf. 2021, 207, 111599. [Google Scholar] [CrossRef]
- Xie, J.Q.; Zhao, L.; Liu, K.; Guo, F.; Liu, W. Enantioselective effects of chiral amide herbicides napropamide, acetochlor and propisochlor: The more efficient R-enantiomer and its environmental friendly. Sci. Total Environ. 2018, 626, 860–866. [Google Scholar] [CrossRef]
- Yang, C.X.; Wang, X.N.; Ji, Y.J.; Ma, T.; Zhang, F.; Wang, Y.Q.; Ci, M.W.; Chen, D.T.; Jiang, A.X.; Wang, W.L. Photocatalytic degradation of methylene blue with ZnO@C nanocomposites: Kinetics, mechanism, and the inhibition effect on monoamine oxidase A and B. NanoImpact 2019, 15, 100174. [Google Scholar] [CrossRef]
- Zerin, T.; Song, H.-Y.; Kim, Y.-S. Extracellular signal-regulated kinase pathway play distinct role in acetochlor-mediated toxicity and intrinsic apoptosis in A549 cells. Toxicol. Vitr. 2015, 29, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ni, X.Z.; Wu, Z.J.; Tang, J. Physiological and transcriptomic analyses reveal the threat of herbicides glufosinate and glyphosate to the scleractinian coral Pocillopora damicornis. Ecotoxicol. Environ. Saf. 2021, 229, 113074. [Google Scholar] [CrossRef] [PubMed]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Hines, C.J.; Blair, A.; Lubin, J.; Ma, X.; Zhang, Y.; Freeman, L.E.B. Use of acetochlor and cancer incidence in the Agricultural Health Study. Int. J. Cancer 2015, 137, 1167–1175. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.N.; Yang, C.X.; Sun, Y.Y.; Sui, X.; Zhu, T.; Wang, Q.; Wang, S.; Yang, J.; Yang, W.J.; Liu, F.Y.; et al. novel screening strategy of anti-SARS-CoV-2 drugs via blocking interaction between Spike RBD and ACE2. Environ. Int. 2020, 147, 106361. [Google Scholar] [CrossRef]
- Wijewardene, L.; Wu, N.; Hörmann, G.; Messyasz, B.; Riis, T.; Hölzel, C.; Ulrich, U.; Fohrer, N. Effects of the herbicides metazachlor and flufenacet on phytoplankton communities—A microcosm assay. Ecotoxicol. Environ. Saf. 2021, 228, 113036. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Y.; Jia, X.J.; Yang, L.; Wang, X.; Guo, X.N.; Zhang, Z.B. Tris(4-hydroxyphenyl)ethane (THPE), a trisphenol compound, is antiestrogenic and can retard uterine development in CD-1 mice. Environ. Pollut. 2020, 260, 113962. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, L.; Liu, K.; Liu, W. Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor. Environ. Pollut. 2018, 246, 728–733. [Google Scholar] [CrossRef]
- Ye, M.; Beach, J.; Martin, J.W.; Senthilselvan, A. Occupational Pesticide Exposures and Respiratory Health. Int. J. Environ. Res. Public Health 2013, 10, 6442–6471. [Google Scholar] [CrossRef]
- Bobba, C.M.; Fei, Q.; Shukla, V.; Lee, H.; Patel, P.; Putman, R.K.; Spitzer, C.; Tsai, M.; Wewers, M.D.; Lee, R.J.; et al. Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat. Commun. 2021, 12, 289. [Google Scholar] [CrossRef]
- Guo, Y.; Ying, S.; Zhao, X.; Liu, J.; Wang, Y. Increased expression of lung TRPV1/TRPA1 in a cough model of bleomycin-induced pulmonary fibrosis in Guinea pigs. BMC Pulm. Med. 2019, 19, 27–37. [Google Scholar] [CrossRef]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weintraub, K. The quest to extend the reach of checkpoint inhibitors in lung cancer. Nature 2020, 552, S62–S63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Wang, M.; Luo, S.J.; Gu, Y.F.; Nie, D.Y.; Xu, Z.Y.; Wu, Y.; Chen, M.D.; Ge, X.L. Comparative Toxic Effects of Manufactured Nanoparticles and Atmospheric Particulate Matter in Human Lung Epithelial Cells. Int. J. Environ. Res. Public Health 2020, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Roel-Touris, J.L.; Jiménez-García, B.; Bonvin, A.M.J.J. Integrative modeling of membrane-associated protein assemblies. Nat. Commun. 2020, 11, 6210. [Google Scholar] [CrossRef] [PubMed]
- Suo, Y.; Wang, Z.L.; Zubcevic, L.; Hsu, A.L.; He, Q.; Borgnia, M.J.; Ji, R.-R.; Lee, S.-Y. Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron 2019, 105, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; Chen, Y.H.; Yu, R.X.; Zhao, X.P.; Wang, Q.; Cai, L.M. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development. Environ. Toxicol. Pharmacol. 2016, 42, 125–134. [Google Scholar] [CrossRef]
- Kirrane, E.F.; Hoppin, J.A.; Kamel, F.; Umbach, D.M.; Boyes, W.K.; DeRoos, A.J.; Alavanja, M.; Sandler, D.P. Retinal Degeneration and Other Eye Disorders in Wives of Farmer Pesticide Applicators Enrolled in the Agricultural Health Study. Am. J. Epidemiol. 2005, 161, 1020–1029. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, A.; Steinritz, D.; Gudermann, T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017, 67, 123–137. [Google Scholar] [CrossRef]
- Dietrich, A. Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals 2019, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S.J. Transient Receptor Potential A1 Is a Sensory Receptor for Multiple Products of Oxidative Stress. J. Neurosci. 2008, 28, 2485–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrè, E.; Gatti, R.; Trevisani, M.; Preti, D.; Baraldi, P.; Patacchini, R.; Geppetti, P. Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. J. Cereb. Blood Flow Metab. 2009, 158, 1621–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feske, S.; Rao, A.; Hogan, P.G. The Ca2+–calcineurin–NFAT signalling pathway. New Compr. Biochem. 2007, 41, 365–401. [Google Scholar]
- Giorgi, C.; Romagnoli, A.; Pinton, P.; Rizzuto, R. Ca2+ signaling, mitochondria and cell death. Curr. Mol. Med. 2008, 8, 119–130. [Google Scholar] [PubMed]
- Ko, H.K.; Lin, A.H.; Perng, D.W.; Lee, T.S.; Kou, Y.R. Lung epithelial TRPA1 mediates lipopolysaccharide-induced lung inflammation in bronchial epithelial cells and mice. Front. Physiol. 2020, 11, 596314. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Y.; Zhang, Y.B.; Xu, M.M.; Zhang, H.; Chen, Y.Q.; Chung, K.F.; Adcock, I.M.; Li, F. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic. Biol. Med. 2019, 134, 229–238. [Google Scholar] [CrossRef] [Green Version]
AHs | A549 Cells (μM) | A549 Cells + HC-030031 50 μM (μM) | TRPA1-KO A549 Cells (μM) |
---|---|---|---|
Propanil | 831 | 2290 | 2558 |
Propisochlor | 564 | 1690 | 1828 |
Metolachlor | 430 | 620 | 562 |
Alachlor | 565 | 731 | 659 |
Acetochlor | 524 | 647 | 696 |
Pretilachlor | 2333 | 4456 | 3672 |
Butachlor | 619 | 1757 | 767 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Sun, Y.; Wang, Q.; Liu, F.; Yang, W.; Sui, X.; Yang, J.; Zhang, M.; Wang, S.; Xiao, Z.; et al. Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation. Int. J. Environ. Res. Public Health 2022, 19, 7985. https://doi.org/10.3390/ijerph19137985
Wang X, Sun Y, Wang Q, Liu F, Yang W, Sui X, Yang J, Zhang M, Wang S, Xiao Z, et al. Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation. International Journal of Environmental Research and Public Health. 2022; 19(13):7985. https://doi.org/10.3390/ijerph19137985
Chicago/Turabian StyleWang, Xiaoning, Yangyang Sun, Qian Wang, Fengying Liu, Weijie Yang, Xin Sui, Jun Yang, Minmin Zhang, Shuai Wang, Zhenyu Xiao, and et al. 2022. "Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation" International Journal of Environmental Research and Public Health 19, no. 13: 7985. https://doi.org/10.3390/ijerph19137985
APA StyleWang, X., Sun, Y., Wang, Q., Liu, F., Yang, W., Sui, X., Yang, J., Zhang, M., Wang, S., Xiao, Z., Luo, Y., Wang, Y., & Zhu, T. (2022). Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation. International Journal of Environmental Research and Public Health, 19(13), 7985. https://doi.org/10.3390/ijerph19137985