Conflict Identification and Zoning Optimization of “Production-Living-Ecological” Space
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Research Method
2.2.1. Classification System of “Production-Living-Ecological” Space
2.2.2. Spatial Conflict Measurement Model
2.2.3. Land Use Change Simulation Model
2.3. Data Source and Technical Process
3. Results
3.1. Land Use Change Analysis
3.2. Analysis of Spatiotemporal Changes of “Production-Living-Ecological” Space
3.2.1. Spatial Pattern of “Production-Living-Ecological” Space
3.2.2. Analysis on the Change of “Production-Living-Ecological” Space Conflict
3.3. Simulation of Spatial Conflict of “Production-Living-Ecological” Space in Multi-Scenario
3.3.1. Model Reliability Test
3.3.2. Multi-Scenario Scheme Setting
3.3.3. Land Use Simulation Parameter Setting
3.3.4. Simulation Results of Future Land Use Change
3.3.5. Conflict Simulation of Future “Production-Living-Ecological” Space
3.4. The Functional Zoning of “Production-Living-Ecological” Space
4. Discussion
4.1. Deepening Understanding of Space Conflict
4.2. Deficiencies and Future Direction
4.3. Policy Enlightenment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, A.; Xu, Y.; Lu, L.; Liu, C.; Zhang, Y.; Hao, J.; Wang, H. Research progress of the identification and optimization of production-living-ecological spaces. Prog. Geogr. 2020, 39, 503–518. [Google Scholar] [CrossRef]
- Zhou, G.; Peng, J. The Evolution Characteristics and Influence Effect of Spatial Conflict: A Case Study of Changsha-Zhuzhou-Xiangtan Urban Agglomeration. Prog. Geogr. 2012, 31, 717–723. [Google Scholar]
- Duan, Y.; Xu, Y.; Huang, A.; Lu, L.; Ji, Z. Progress and prospects of “production-1iving-ecological” functions evaluation. J. China Agric. Univ. 2021, 26, 113–124. [Google Scholar]
- Jiang, M.; Liu, Y. Discussion on the Concept Definition and Spatial Boundary Classification of “Production-Living-Ecological” Space. Urban Dev. Stud. 2020, 27, 43–48. [Google Scholar]
- Wang, W.; Hu, Y.; Zhang, Y. “Ecological-living-industrial” Space Structure Cognition and Transformation Control Framework. China Land Sci. 2020, 34, 25–33. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Li, Y. Classification evaluation and spatial-temporal analysis of “production-living-ecological” spaces in China. Acta Geogr. Sin. 2017, 72, 1290–1304. [Google Scholar]
- Li, M.; Yun, Y.; Chen, W.; Ma, Y.; Guo, R. Classification and spatio-temporal analysis of “production-life-ecology” space in Henan Province. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 13–20. [Google Scholar]
- Wu, A. Classification evaluation and pattern evolution of “production and living ecological” space in Beijing-Tianjin-Hebei region. Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 237–242. [Google Scholar]
- Zhang, H.; Xu, E.; Zhu, H. An ecological-living-industrial land classification system and its spatial distribution in China. Resour. Sci. 2015, 37, 1332–1338. [Google Scholar]
- Qi, J. Spatial function identification and pattern evolution of “production-living-ecology” in fast-going urbanization areas—A sampling case study of Xinzheng City, Henan. J. Saf. Environ. 2020, 20, 1588–1595. [Google Scholar]
- Zou, Y.; Zhang, S.; Xie, Y.; Du, Y. Spatial distribution and evolution characters of production-living-ecological spaces in Xuzhou city. Sci. Surv. Mapp. 2020, 45, 154–162. [Google Scholar]
- Liu, Z. Three Spaces and Three Lines Delimitation in the Context of New Spatial Plan System. Planners 2019, 35, 27–31. [Google Scholar]
- Zhang, Y.; Luan, Q.; Xiong, C.; Liu, X. Spatial heterogeneity evaluation and zoning of production-living-ecological space based on multi-source spatial data. Trans. Chin. Soc. Agric. Eng. 2021, 37, 214–223. [Google Scholar]
- Song, Y.; Xue, D.; Xia, S.; Mi, W. Change characteristics and formation mechanism of the territorial spatial pattern in the Yellow River Basin from 1980 to 2018, China. Geogr. Res. 2021, 40, 1445–1463. [Google Scholar]
- Lei, Z.; Xiaoqin, C.; Xiaocui, D.; Qianqian, M.; Yanxia, W. Research on Spatial Layout Optimization of Industrial Land Based on Mutual Exclusion of Ecological-Production-Living Spaces in Tianjin. Geogr. Geo-Inf. Sci. 2019, 35, 112–119. [Google Scholar]
- Zhang, H.; Li, Y. The Evaluation and Improvement of “Three Spaces” in Plain Cities in Northern China. Planners 2019, 35, 18–24. [Google Scholar]
- Zhu, Y.; Yu, B.; Zeng, J.; Han, Y. Spatial Optimization from Three Spaces of Production, Living and Ecologyin National Restricted Zones—A Case Study of Wufeng County in Hubei Province. Econ. Geogr. 2015, 35, 26–32. [Google Scholar]
- Gou, M.; Liu, C.; Li, L.; Xiao, W.; Wang, N.; Hu, J. Ecosystem service value effects of the Three Gorges Reservoir Area land use transformation under the perspective of “production-living-ecological” space. Chin. J. Appl. Ecol. 2021, 32, 3933–3941. [Google Scholar]
- Dai, W.; Jiang, F.; Huang, W.; Liao, L.; Jiang, K. Study on Transition of Land Use Function and Ecosystem Service Value Based on the Conception of Production, Living and Ecological Space: A Case Study of the Fuzhou New Area. J. Nat. Resour. 2018, 33, 2098–2109. [Google Scholar]
- Li, X.; Fang, B.; Yin, R.; Xu, X.; Chen, T. Spatial Pattern and Association of Production-Living-Ecological Function and Life Quality on the Village Scale: A Case of Yangzhong City, Jiangsu Province. Sci. Geogr. Sin. 2020, 40, 599–607. [Google Scholar]
- Li, B.; Zeng, C.; Dou, Y.; Liu, P.; Chen, C. Change of human settlement environment and driving mechanism in traditional villages based on living-production-ecological space: A case study of Lanxi Village, Jiangyong County, Hunan Province. Prog. Geogr. 2018, 37, 677–687. [Google Scholar]
- Zhu, Y.; Zhou, X.; Luo, J.; Cui, J. Spatio-temporal Evaluation of Rural Human Settlements Quality and Its Differentiations in Urban Agglomeration in the Middle Reaches of the Yangtze River. Econ. Geogr. 2021, 41, 127–136. [Google Scholar]
- Li, W.; Li, J.; Yao, Y.; Tan, X. Consolidation Division of Rural Residential Areas Based on Reconstruction of Production, Living and Ecology Space:A Case Study of Guandang Town of Shayang County in Jingzhou City of Hubei Province. Areal Res. Dev. 2016, 35, 139–143. [Google Scholar]
- Xia, F.; Yan, J. Exploration on the transformation and development direction of China’s land regulation in the new normal period. Soc. Sci. Ningxia 2016, 3, 109–113. [Google Scholar]
- Shen, Y.; Yan, J.; Chen, H. Land consolidation function unit demarcation based on optimization of production, living and ecology space in peri-urban areas. Trans. Chin. Soc. Agric. Eng. 2018, 34, 243–252. [Google Scholar]
- Yu, L.; Cai, Y.; Luo, C. Measurement and Spatial Correlation Analysis of Spatial Regulation of Land Use: A Case Study of Hubei Province. Geogr. Geo-Inf. Sci. 2020, 36, 97–103. [Google Scholar]
- Yu, C.; Wang, Q. A Study on the Spatiotemporal Pattern Changes of “Agricultural-Living & Non-agricultural Production-Ecological” in Different Major Function-oriented Zones of Fujian Province. J. Fujian Norm. Univ. 2019, 35, 90–99. [Google Scholar]
- Zhang, H.; Li, M.; Zhang, Q. Construction of land classification system and land type identification for territorial spatial planning based on multi-source data. Trans. Chin. Soc. Agric. Eng. 2020, 36, 261–269. [Google Scholar]
- Zou, L.; Liu, Y.; Wang, Y. Process of Land Use Conflict Research in China during the Past Fifteen Years. Prog. Geogr. 2020, 39, 298–309. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Wang, L. Land use spatial conflicts and complexity: A case study of the urban agglomeration around Hangzhou Bay, China. Geogr. Res. 2015, 34, 1630–1642. [Google Scholar]
- Chen, Z.; Feng, X.; Hong, Z.; Ma, B.; Li, Y. Research on spatial conflict calculation and zoning optimization of land use in Nanchang City from the perspective of “three living spaces”. World Reg. Stud. 2021, 30, 533–545. [Google Scholar]
- Zhao, Y.; Zhang, Y.; Li, X. Evolution and spatial variation of land use conflict intensity in Qian-Gui karst mountainous areas. Carsologica Sin. 2017, 36, 492–500. [Google Scholar]
- Tang, K.; Zhou, G. Analysis of Spatial Conflict Measurement Based on the Perspective of Economics: A Case Study of Changzhutan Areas. J. Nat. Sci. Hunan Norm. Univ. 2013, 36, 90–94. [Google Scholar]
- Min, J.; Wang, Y.; Liu, R. Analysis on the Evolutionary Characteristics of Land Use Conflicts in the Ecological Barrier Zone of the Three Gorges Reservoir Area (Chongqing Section). Mt. Res. 2018, 36, 334–344. [Google Scholar]
- Wang, Q.; Zheng, L.; Bian, Z.; Qian, F.; Liu, H. Identification and application of potential land use conflict in Shenbei New Area. Trans. Chin. Soc. Agric. Eng. 2012, 28, 185–192. [Google Scholar]
- Qiu, G.; Niu, Q.; Wu, Z.; Guo, S.; Qin, L.; Wang, Y. Spatial measurement and heterogeneity analysis of land use conflict in Suzhou Wuxi Changzhou Urban Agglomeration. Res. Soil Water Conserv. 2021, 29, 1–8. [Google Scholar]
- Liao, L.; Dai, W.; Chen, J.; Huang, W.; Jiang, F.; Hu, Q. Spatial conflict between ecological-production-living spaces on Pingtan Island during rapid urbanization. Resour. Sci. 2017, 39, 1823–1833. [Google Scholar]
- He, Y.; Tang, C.; Zhou, G.; He, S.; Qiu, Y.; Shi, L.; Zhang, H. The Analysis of Spatial Conflict Measurement in Fast Urbanization Region from the Perspective of Geography—A Case Study of Changsha-Zhuzhou-Xiangtan Urban Agglomeration. J. Nat. Resour. 2014, 29, 1660–1674. [Google Scholar]
- Zhao, X.; Tang, F.; Zhang, P.; Hu, B.; Xu, L. Dynamic simulation and characteristic analysis of county production-living-ecological spatial conflicts based on CLUE-S model. Acta Ecol. Sin. 2019, 39, 5897–5908. [Google Scholar]
- Peng, J.; Zhou, G.; Tang, C.; He, Y. The Analysis of Spatial Conflict Measurement in Fast Urbanization Region Based on Ecological Security—A Case Study of Changsha-Zhuzhou-Xiangtan Urban Agglomeration. J. Nat. Resour. 2012, 27, 1507–1519. [Google Scholar]
- Zhang, Y.; Gao, M.; Cuminbibra, I. Analysis and Simulation of Conflicts of Three Space Types in Oasis Counties of Northwest Arid Zone. Bull. Soil Water Conserv. 2021, 41, 207–213. [Google Scholar]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.; Li, D.; Chen, K.; Yao, H. Multi-scenario simulation and prediction of ecological space in Hubei province based on FLUS model. J. Nat. Resour. 2020, 35, 230–242. [Google Scholar]
- Fang, C.; Liu, H. The Spatial Privation and the Corresponding Controlling Paths in China’s Urbanization Process. Acta Geogr. Sin. 2007, 62, 849–860. [Google Scholar]
- Xie, Z.; Xu, X. The Competition Mechanism between Green Space and Urban Land Based a Case Study of Beijing. Res. Soil Water Conserv. 2007, 6, 223–226. [Google Scholar]
- Zhou, Z.; Zhu, C. Recent Progress of Studies on the Regional Spatial Integration and Its Prospects in China. Areal Res. Dev. 2009, 28, 1–5. [Google Scholar]
- Li, M.; Fang, C.; Sun, X. Progress and Prospect in Regional Governance Study. Prog. Geogr. 2007, 26, 107–120. [Google Scholar]
- Wackernagel, M.; Onisto, L.; Bello, P.; Callejas Linares, A.; Susana López Falfán, I.; Méndez García, J.; Isabel Suárez Guerrero, A.; Guadalupe Suárez Guerrero, M. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Chen, B.; Jun, Z.; Chen, N. Construction and application on the niche theory of land-use. Arid. Land Geogr. 2010, 33, 791–801. [Google Scholar]
- Yan, D.; Wang, Y.; Sun, W.; Li, P. A comparative study on the driving factors and spatial spillover effects of economic growth across different regions of China. Geogr. Res. 2021, 40, 3137–3153. [Google Scholar]
- Andrew, J.S. Potential application of mediation to land use conflicts in small-scale mining. J. Clean. Prod 2003, 11, 117–130. [Google Scholar] [CrossRef]
- Steinhäußer, R.; Siebert, R.; Steinführer, A.; Hellmich, M. National and regional land-use conflicts in Germany from the perspective of stakeholders. Land Use Policy 2015, 49, 183–194. [Google Scholar] [CrossRef]
- Jensen, D.; Baird, T.; Blank, G. New landscapes of conflict: Land-use competition at the urban-rural fringe. Landsc. Res. 2018, 44, 418–429. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L.; Cheng, H. Spatial-temporal pattern of land use conflict in China and its multilevel driving mechanisms. Sci. Total Environ 2021, 801, 149697. [Google Scholar] [CrossRef]
- Pavón, D.; Ventura, M.; Ribas, A.; Serra, P.; Saurí, D.; Breton, F. Land use change and socio-environmental conflict in the Alt Empordà county (Catalonia, Spain). J. Arid Environ 2003, 54, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Bircol, G.A.C.; Souza, M.P.D.; Fontes, A.T.; Chiarello, A.G.; Ranieri, V.E.L. Planning by the rules: A fair chance for the environment in a land-use conflict area. Land Use Policy 2018, 76, 103–112. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Ahani, S. Land tenure-related conflicts in peri-urban areas: A review. Land Use Policy 2019, 85, 218–229. [Google Scholar] [CrossRef]
- Cui, J.; Kong, X.; Chen, J.; Sun, J.; Zhu, Y. Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt. Land 2021, 10, 43. [Google Scholar] [CrossRef]
- Eufemia, L.; Pérez, P.; Rodriguez, T.; Lozano, C.; Bonatti, M.; Morales, H.; Loehr, K.; Hachmann, S.; Kieselbach, F.; Rheinfels, L.; et al. Governance in post-conflict scenarios: Assessing models of community-based governance in the departments of Caquetá and Cesar (Colombia). Territ. Politics Gov. 2021, 1–23. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Bao, H. The logic behind conflicts in land acquisitions in contemporary China: A framework based upon game theory. Land Use Policy 2013, 30, 373–380. [Google Scholar] [CrossRef]
- Baumann, M.; Radeloff, V.C.; Avedian, V.; Kuemmerle, T. Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Reg. Environ. Chang. 2015, 15, 1703–1716. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Tian, R. Land-Use Conflict Identification from the Perspective of Construction Space Expansion: An Evaluation Method Based on ‘Likelihood-Exposure-Consequence’. ISPRS Int. J. Geo-Inf. 2021, 10, 433. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.; Zhang, M.; Li, S. Measurement and prediction of land use conflict in an opencast mining area. Resour. Policy 2021, 71, 101999. [Google Scholar] [CrossRef]
- Dhiaulhaq, A.; Wiset, K.; Thaworn, R.; Kane, S.; Gritten, D. Forest, water and people: The roles and limits of mediation in transforming watershed conflict in Northern Thailand. For. Soc. 2017, 1, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Magigi, W.; Drescher, A.W. The dynamics of land use change and tenure systems in Sub-Saharan Africa cities; learning from Himo community protest, conflict and interest in urban planning practice in Tanzania. Habitat Int. 2010, 34, 154–164. [Google Scholar] [CrossRef]
- Delgado-Matas, C.; Mola-Yudego, B.; Gritten, D.; Kiala-Kalusinga, D.; Pukkala, T.; Sveriges, L. Land use evolution and management under recurrent conflict conditions: Umbundu agroforestry system in the Angolan Highlands. Land Use Policy 2015, 42, 460–470. [Google Scholar] [CrossRef]
- Sakayarote, K.; Shrestha, R.P. Simulating land use for protecting food crop areas in northeast Thailand using GIS and Dyna-CLUE. J. Geogr. Sci. 2019, 29, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Xu, Y.; Yu, Z.; Liu, Q.; Xie, B.; Liu, J. Scenario simulation and landscape pattern dynamic changes of land use in the Poverty Belt around Beijing and Tianjin: A case study of Zhangjiakou city, Hebei Province. J. Geogr. Sci. 2016, 26, 272–296. [Google Scholar] [CrossRef]
- Cao, S.; Jin, X.; Yang, X.; Sun, R.; Liu, J.; Han, B.; Xu, W.; Zhou, Y. Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan district. J. Nat. Resour. 2019, 34, 1171–1185. [Google Scholar] [CrossRef]
- Li, C.; Gao, B.; Wu, Y.; Zheng, K.; Wu, Y. Dynamic simulation of landscape ecological risk in mountain towns based on PLUS model. J. Zhejiang AF Univ. 2022, 39, 84–94. [Google Scholar] [CrossRef]
- Luo, F.; Pan, A.; Chen, Z.; Wang, Y. Spatiotemporal Pattern Change of Cultivated Land and Its Driving Forces in Yibin City, Sichuan Province during 1980–2018. Bull. Soil Water Conserv. 2021, 41, 336–344. [Google Scholar]
- Zhang, R.; Lu, J. Simulation of Land Use Pattern Evolution from a Multi-Scenario Perspective: A Case Study of Suzhou City in Anhui Province, China. Int. J. Environ. Res. Public Health 2021, 18, 921. [Google Scholar] [CrossRef]
- Tian, P.; Cao, L.; Li, J.; Pu, R.; Gong, H.; Li, C. Landscape Characteristics and Ecological Risk Assessment Based on Multi-Scenario Simulations: A Case Study of Yancheng Coastal Wetland, China. Sustainability 2020, 13, 149. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, Y.; Zhang, H.; Liu, L. Optimization of the land use pattern in Horqin Sandy Land by using the CLUMondo model and Bayesian belief network. Sci. Total Environ. 2020, 739, 139929. [Google Scholar] [CrossRef]
- Yang, G.; Gui, Q.; Chen, Y.; Luo, Y.; Yang, Y. Spatial and Temporal Evolution Characteristics of Ecological Security in Three Gorges Reservoir Area during 2015–2019 Based on Grey Relational Theory. Bull. Soil Water Conserv. 2021, 41, 348–356. [Google Scholar]
- Hu, Z.; Li, X.; Lou, S.; Kang, J. Multi-scenario Simulation of Land Use Structure of Yangzhou City Based on Systems Dynamics Model. Bull. Soil Water Conserv. 2017, 37, 211–218. [Google Scholar]
- Wang, Z.; Shi, P.; Zhang, X.; Wang, Y.; Xie, X. Simulation of Lanzhou urban land expansion based on multi-agent model. Chin. J. Appl. Ecol. 2021, 32, 2169–2179. [Google Scholar]
Class 1 | Class 2 |
---|---|
ecological space | River, lake, barren grassland, coastal beach, sandy land and bare land |
“ecological-production” space | Woodland, shrub woodland, other woodland, land for natural scenery, and water surface of reservoirs and ponds |
“production-ecological” space | Paddy field, dry land, irrigated land, orchard and other gardens |
“living-production” space | Towns, villages, mining land, transportation land, hydraulic construction land, ports and wharfs, special land |
Data Type | Name | Source | |
---|---|---|---|
Basic data | Administrative boundary | Administrative Region | Resource and Environment Science and Data Center (https://www.resdc.cn, accessed on 1 May 2020) |
Land use | Land use data | ||
Spatial driving factor | Socio economic drivers | Population density | WorldPoP database (https://www.worldpop.org/methods/populations, accessed on 1 May 2020) |
Night light data | VIIRS nighttime lights (https://eogdata.mines.edu/product/vnl/, accessed on 1 May 2020) | ||
Grid GDP | Grid data set of spatial distribution of China’s GDP (https://www.resdc.cn, accessed on 1 May 2020) | ||
Natural environment drivers | Elevation | Geospatial data cloud (https://www.gscloud.cn, accessed on 1 May 2020) | |
Slope | |||
Slope aspect | |||
Annual average temperature | National Meteorological Science Data Center (http://data.cma.cn, accessed on 1 May 2020) | ||
Annual average precipitation | |||
Accessibility drivers | Distance from main road | The vector data come from the land survey database of Qianjiang City, and the relevant results are calculated by European distance | |
Distance from railway | |||
Distance from river | |||
Distance from residential area | |||
Distance from city | |||
Spatial restriction factor | Ecological Reserve | Through land use data extraction | |
Basic farmland area | Qianjiang City Land Use Planning Database (2006–2020) |
Year | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
2000 | 1561.89 | 25.48 | 0.06 | 192.14 | 234.60 | 2.83 |
2005 | 1549.37 | 25.22 | 0.07 | 201.56 | 238.29 | 2.50 |
2010 | 1508.80 | 35.04 | 0.00 | 212.02 | 261.04 | 0.14 |
2015 | 1497.35 | 34.45 | 0.00 | 211.83 | 273.19 | 0.14 |
2020 | 1497.68 | 31.97 | 0.11 | 214.04 | 269.93 | 2.36 |
2000–2005 | −12.52 | −0.26 | 0.00 | 9.42 | 3.69 | −0.33 |
−0.80% | −1.01% | 5.63% | 4.90% | 1.57% | −11.68% | |
2005–2010 | −40.57 | 9.82 | −0.07 | 10.46 | 22.75 | −2.36 |
−2.62% | 38.95% | −100.00% | 5.19% | 9.55% | −94.31% | |
2010–2015 | −11.45 | −0.59 | 0.00 | −0.19 | 12.16 | 0.00 |
−0.76% | −1.70% | 0.00% | −0.09% | 4.66% | 0.00% | |
2015–2020 | 0.33 | −2.48 | 0.11 | 2.20 | −3.27 | 2.22 |
0.02% | −7.19% | 0.00% | 1.04% | −1.20% | 1558.86% | |
2000–2020 | −64.21 | 6.50 | 0.05 | 21.89 | 35.32 | −0.47 |
−4.11% | 25.50% | 78.87% | 11.39% | 15.06% | −16.56% |
Year | “Living-Production” Space | “Production-Ecological” Space | “Ecological-Production” Space | Ecological Space |
---|---|---|---|---|
2000 | 234.60 | 1561.95 | 217.62 | 2.83 |
2005 | 238.29 | 1549.44 | 226.78 | 2.50 |
2010 | 261.04 | 1508.80 | 247.06 | 0.14 |
2015 | 273.19 | 1497.35 | 246.28 | 0.14 |
2020 | 269.93 | 1497.79 | 246.01 | 2.36 |
2000–2005 | 3.69 | −12.52 | 9.16 | −0.33 |
1.57% | −0.80% | 4.21% | −11.65% | |
2005–2010 | 22.75 | −40.64 | 20.28 | −2.36 |
9.55% | −2.62% | 8.94% | −94.31% | |
2010–2015 | 12.16 | −11.45 | −0.78 | 0.00 |
4.66% | −0.76% | −0.32% | 0.00% | |
2015–2020 | −3.27 | 0.44 | −0.27 | 2.22 |
−1.20% | 0.03% | −0.11% | 1558.86% | |
2000–2020 | 35.32 | −64.16 | 28.39 | −0.47 |
15.06% | −4.11% | 13.05% | −16.56% |
Conflict Type | Conflict Classification | Number and Proportion of Conflict Space Units | ||||
---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | ||
Weaker Spatial Conflict | 0–0.2 | 55 | 16 | 12 | 15 | 14 |
2.51% | 0.73% | 0.55% | 0.68% | 0.64% | ||
Weak Spatial Conflict | 0.2–0.4 | 449 | 217 | 241 | 238 | 202 |
20.47% | 9.90% | 10.99% | 10.85% | 9.21% | ||
Medium Spatial Conflict | 0.4–0.6 | 893 | 1009 | 951 | 919 | 897 |
40.72% | 46.01% | 43.37% | 41.91% | 40.90% | ||
Strong Spatial Conflict | 0.6–0.8 | 737 | 877 | 914 | 926 | 935 |
33.61% | 39.99% | 41.68% | 42.23% | 42.64% | ||
Stronger Spatial Conflict | 0.8–1.0 | 59 | 74 | 75 | 95 | 145 |
2.69% | 3.37% | 3.42% | 4.33% | 6.61% | ||
Total | 2193 | 2193 | 2193 | 2193 | 2193 |
Year | Conflict Type | Weaker Spatial Conflict | Weak Spatial Conflict | Medium Spatial Conflict | Strong Spatial Conflict | Stronger Spatial Conflict |
---|---|---|---|---|---|---|
2000 | “Living-Production” space | 0.01% | 0.21% | 3.77% | 6.74% | 0.90% |
“Production-Ecological” space | 0.21% | 15.76% | 33.71% | 25.92% | 1.84% | |
“Ecological-Production” space | 0.12% | 2.02% | 4.74% | 3.71% | 0.20% | |
Ecological space | 0.00% | 0.07% | 0.07% | 0.00% | 0.00% | |
2005 | “Living-Production” space | 0.00% | 0.06% | 2.78% | 7.79% | 1.19% |
“Production-Ecological” space | 0.02% | 3.80% | 39.15% | 31.55% | 2.31% | |
“Ecological-Production” space | 0.06% | 2.06% | 5.25% | 3.68% | 0.19% | |
Ecological space | 0.00% | 0.06% | 0.06% | 0.00% | 0.00% | |
2010 | “Living-Production” space | 0.00% | 0.07% | 3.03% | 8.62% | 1.22% |
“Production-Ecological” space | 0.02% | 4.31% | 35.91% | 32.26% | 2.31% | |
“Ecological-Production” space | 0.06% | 2.75% | 5.12% | 4.12% | 0.20% | |
Ecological space | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
2015 | “Living-Production” space | 0.00% | 0.07% | 2.90% | 8.99% | 1.59% |
“Production-Ecological” space | 0.02% | 4.26% | 34.56% | 32.44% | 2.96% | |
“Ecological-Production” space | 0.06% | 2.66% | 5.14% | 4.17% | 0.19% | |
Ecological space | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
2020 | “Living-Production” space | 0.00% | 0.05% | 2.33% | 8.51% | 2.49% |
“Production-Ecological” space | 0.01% | 3.48% | 33.69% | 32.70% | 4.40% | |
“Ecological-Production” space | 0.06% | 2.17% | 5.27% | 4.40% | 0.30% | |
Ecological space | 0.00% | 0.06% | 0.05% | 0.01% | 0.00% |
Natural Development Scenario (ND) | Cultivated Land Protection Scenario (CL) | Ecological Protect Scenario (EP) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A 1 | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
A | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
B | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
C | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
D | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
E | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
F | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Year | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Actual land use in 2010 | 1508.80 | 35.04 | 0.00 | 212.02 | 261.04 | 0.14 |
Actual land use in 2015 | 1497.35 | 34.45 | 0.00 | 211.83 | 273.19 | 0.14 |
Actual land use in 2020 | 1497.68 | 31.97 | 0.11 | 214.04 | 269.93 | 2.36 |
Natural development scenario (ND) | 1453.65 | 37.67 | 0.15 | 225.29 | 297.63 | 2.24 |
Ecological protect scenario (EP) | 1458.42 | 38.13 | 0.15 | 226.10 | 291.59 | 2.24 |
Cultivated land protection scenario (CL) | 1467.38 | 33.24 | 0.15 | 225.51 | 288.12 | 2.24 |
Land Use Type | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Neighborhood weight | 0.56 | 0.25 | 0.36 | 0.43 | 1 | 0.25 |
Conflict Type | Conflict Classification | Multi Scenario Analysis | ||
---|---|---|---|---|
Natural Development Scenario | Cultivated Land Protection Scenario | Ecological Protection Scenario | ||
Weaker Spatial Conflict | 0–0.2 | 52 | 22 | 65 |
2.37% | 1.00% | 2.96% | ||
Weak Spatial Conflict | 0.2–0.4 | 383 | 322 | 383 |
17.46% | 14.68% | 17.46% | ||
Medium Spatial Conflict | 0.4–0.6 | 962 | 1043 | 1036 |
43.87% | 47.56% | 47.24% | ||
Strong Spatial Conflict | 0.6–0.8 | 716 | 740 | 649 |
32.65% | 33.74% | 29.59% | ||
Stronger Spatial Conflict | 0.8–1.0 | 80 | 66 | 60 |
3.65% | 3.01% | 2.74% | ||
Total | 2193 | 2193 | 2193 |
Conflict Level | Year 2035 | ||||||
---|---|---|---|---|---|---|---|
Weaker Spatial Conflict (1) | Weak Spatial Conflict (2) | Medium Spatial Conflict (3) | Strong Spatial Conflict (4) | Stronger Spatial Conflict (5) | |||
Weak Conflict | Strong Conflict | ||||||
Year 2020 | Weaker Spatial Conflict (1) | Weak Conflict | 11 | 12 1 | 13 | 14 | 15 |
Weak Spatial Conflict (2) | 21 | 22 | 23 | 24 | 25 | ||
Medium Spatial Conflict (3) | 31 | 32 | 33 | 34 | 35 | ||
Strong Spatial Conflict (4) | 41 | 42 | 43 | 44 | 45 | ||
Stronger Spatial Conflict (5) | Strong Conflict | 51 | 52 | 53 | 54 | 55 |
Functional Area | Category | Main Problems | Measures |
---|---|---|---|
Ecological protection zone | 11, 21, 41 | Important ecological protection areas need to be protected | Establish ecological protection areas |
Ecological conservation zone | 22, 32, 42 | It has the function of regulating climate and maintaining ecosystem stability | Adopt an ecological protection development model |
Modern agricultural zone | 13, 23, 33 | The relationship between man and land is complex and the ecological environment is easily damaged | Protect cultivated land and develop efficient agriculture |
Development coordination zone | 43, 34, 44 | The advantages of urban land use are obvious, and a large number of surrounding land resources are eroded | Tap urban space resources |
Urban optimization zone | 45, 54, 55 | The utilization rate of land resources is poor, and most of the land idle | Optimize urban layout and improve land use efficiency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Xu, J.; Zhao, C. Conflict Identification and Zoning Optimization of “Production-Living-Ecological” Space. Int. J. Environ. Res. Public Health 2022, 19, 7990. https://doi.org/10.3390/ijerph19137990
Xiao P, Xu J, Zhao C. Conflict Identification and Zoning Optimization of “Production-Living-Ecological” Space. International Journal of Environmental Research and Public Health. 2022; 19(13):7990. https://doi.org/10.3390/ijerph19137990
Chicago/Turabian StyleXiao, Pengnan, Jie Xu, and Chong Zhao. 2022. "Conflict Identification and Zoning Optimization of “Production-Living-Ecological” Space" International Journal of Environmental Research and Public Health 19, no. 13: 7990. https://doi.org/10.3390/ijerph19137990
APA StyleXiao, P., Xu, J., & Zhao, C. (2022). Conflict Identification and Zoning Optimization of “Production-Living-Ecological” Space. International Journal of Environmental Research and Public Health, 19(13), 7990. https://doi.org/10.3390/ijerph19137990