Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection and Data Collection
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Summary of Risk of Bias
3.4. Effects of Exercise on Muscle Function and Physical Performance
3.4.1. Grip Strength
3.4.2. Knee Extension Strength
3.4.3. Muscle Mass
3.4.4. Walking Speed
3.4.5. Functional Mobility
3.5. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- An, H.Y.; Chen, W.; Wang, C.W.; Yang, H.F.; Huang, W.T.; Fan, S.Y. The Relationships between Physical Activity and Life Satisfaction and Happiness among Young, Middle-Aged, and Older Adults. Int. J. Environ. Res Public Health 2020, 17, 4817. [Google Scholar] [CrossRef] [PubMed]
- Jentoft, A.J.C.; Sayer, A.A. Sarcopenia. Seminar 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Roger, A.; Jay, M.; Anne, B.; Douglas, P.; Cyrus, C.; et al. Sarcopenia definition: The position statements of the sarcopenia definition and outcomes consortium. JAGS 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Nascimento, C.M.; Ingles, M.; Salvador-Pascual, A.; Cominetti, M.R.; Gomez-Cabrera, M.; Vina, J. Sarcopenia, frailty and their prevention by exercise. Free Radic. Biol. Med. 2019, 132, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Walston, J.; Buta, B.; Xue, Q.L. Frailty Screening and Interventions: Considerations for Clinical Practice. Clin. Geriatr. Med. 2018, 34, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Saeki, C.; Takano, K.; Oikawa, T.; Aoki, Y.; Kanai, T.; Takakura, K.; Nakano, M.; Torisu, Y.; Sasaki, N.; Abo, M.; et al. Comparative assessment of sarcopenia using the JSH, AWGS, and EWGSOP2 criteria and the relationship between sarcopenia, osteoporosis, and osteosarcopenia in patients with liver cirrhosis. BMC Musculoskelet. Disord. 2019, 20, 615. [Google Scholar] [CrossRef] [Green Version]
- Ruby, Y.; Moses, W.; Jason, L.; Lee, J.; Auytung, T.W.; Woo, J. Incidence, reversibility, risk factors and the protective effect of high body mass index against sarcopenia in community-dwelling older chinese adults. Geriatr. Gerontol. Int. 2014, 14, 15–28. [Google Scholar] [CrossRef]
- Morley, J.E.; Vellas, B.; van Kan, A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.C.; Doehner, W.; Evans, J.; et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013, 4, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.Z.; No, M.H.; Heo, J.W.; Park, D.H.; Kang, J.H.; Kim, S.H.; Kwak, H.B. Role of exercise in age-related sarcopenia. J. Exerc. Rehabil. 2018, 14, 551–558. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef]
- Choi, M.; Kim, H.; Bae, J. Does the combination of resistance training and a nutritional intervention have a synergic effect on muscle mass, strength, and physical function in older adults? A systematic review and meta-analysis. BMC Geriatr. 2021, 12, 639. [Google Scholar] [CrossRef] [PubMed]
- Li, P.S.; Hsieh, C.J.; Tallutondok, E.B.; Peng, H.J. The Dose-Response Efficacy of Physical Training on Frailty Status and Physical Performance in Community-Dwelling Elderly: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Healthcare 2022, 21, 586. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Mathew, N.; Bee, Y.K.; Tan, C.T.Y.; Nynut, M.S.Z.; Feng, L.; Tan, B.; Chan, G.; Khoo, S.A.; Chan, S.M.; et al. Effects of multi-domain lifestyle interventions on sarcopenia measures and blood biomarkers: Secondary analysis of a randomized controlled trial of community-dwelling pre-frail and frail older adults. Aging 2021, 13, 9330–9347. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Chan, R.; Kwok, T.; Cheng, K.C.; Ha, A.; Woo, J. Effects of exercise and nutrition supplementation in community-dwelling older Chinese people with sarcopenia: A randomized controlled trial. Age Ageing 2019, 48, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Karina, S.S.V.; Dias, J.; Marilia, C.A.; Ana, C.P.; Bruno, S.M.; Rosangela, C.D. Effects of a progressive resistance exercise program with high-speed component on the physical function of older women with sarcopenic obesity: A randomized controlled trial. Braz. J. Phys. Ther. 2016, 20, 432–440. [Google Scholar] [CrossRef]
- Iranzo, M.A.; Bernat, M.B.; Chulia, M.A.T.; Parisi, S.B. Effects of resistance training of peripheral muscles versus respiratory muscles in institutionalized older adults with sarcopenia: A randomized controlled trial. J. Aging Phys. Act. 2018, 26, 637–646. [Google Scholar] [CrossRef]
- Vlietstra, L.; Hendrickx, W.; Waters, D.L. Exercise interventions in healthy older adults with sarcopenia: A systematic review and meta-analysis. Australas J. Ageing 2018, 37, 169–183. [Google Scholar] [CrossRef]
- Bao, W.X.; Sun, Y.; Zhang, T.F.; Zou, L.L.; Wu, X.H.; Wang, D.; Chen, Z.B. Exercise Programs for Muscle Mass, Muscle Strength and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis. Aging Dis. 2020, 11, 863–873. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shanseer, L.; Tetzlaff, Z.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Version 5.1.0; The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 27, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobias, A. Assessing the influence of a single study in the meta-anyalysis estimate. Stata Tech. Bull. 1999, 8, 47. [Google Scholar]
- Andrade, C. Mean difference, standardized mean difference (smd), and their use in meta- analysis: As simple as it gets. J. Clin. Psychiatry 2020, 81, 20f13681. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.T.; Chung, Y.C.; Chen, Y.J.; Ho, S.Y.; Wu, H.J. Effects of different types of exercise on body composition, muscle strength, and igf-1 in the elderly with sarcopenic obesity. J. Am. Geriatr. Soc. 2017, 65, 827–832. [Google Scholar] [CrossRef]
- Tsekoura, M.; Evdokia, B.; Elias, T.; Dimitriadis, Z.; Matzaroglou, C.; Tyllianakis, M.; Panagiotopoulos, E.; Gliatis, J. The effects of group and home-based exercise programs in elderly with sarcopenia: A randomized controlled trial. J. Clin. Med. 2018, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.Z.; Guo, Y.B.; Luo, K.H. Effects of home exercise training on obese sarcopenia in the elderly. Chin. J. Rehabil. Theory Pract. 2019, 25, 90–96. [Google Scholar] [CrossRef]
- Zhu, G.F.; Luo, K.T.; Shen, Z.F.; Gao, F.; Fu, Y.X.; Shen, Q.H. Effect of Yijinjing on muscle strength of senile patients with sarcopenia. Chin. J. Gen. Pract. 2019, 17, 1388–1391. [Google Scholar] [CrossRef]
- Li, Z.; Cui, M.; Yu, K.; Zhang, X.W.; Li, C.W.; Nie, X.D.; Wang, F. Effects of nutrition supplementation and physical exercise on muscle mass, muscle strength and fat mass among sarcopenic elderly: A randomized controlled trial. Appl. Physiol. Nutr. Metab. 2021, 46, 494–500. [Google Scholar] [CrossRef]
- Shao, W.H.; Gao, L.X.; Wang, S.X.; Lv, C.X.; Yao, L.X. Effects of vitamin D combined with resistance training on skeletal muscle mass, activities of daily living and serological indices in elderly patients with sarcopenia. Chin. J. Mult. Organ. Dis. Elderly 2020, 19, 656–660. [Google Scholar] [CrossRef]
- Zhou, S.P.; Zou, Y.; Sun, X.F.; Xu, Q.L. Research on Baduanjin for Preventing Falls in Elderly Patients with Sarcopenia. Sep. Sci. Technol. 2020, 41, 27–30. [Google Scholar]
- Fang, L.; Li, Z.R.; Tao, X.C.; Luo, J. Effects of Yi Jin Jing on the risk of falling of sarcopenia and disequilibrium elderly. Chin. J. Rehabil. Med. 2020, 35, 319–323. [Google Scholar]
- Wang, G.H.; Cai, W.W.; Shen, X.J.; Li, C.Y.; Xu, Y.D. Effects of resistance training using elastic band for 12 weeks on muscle strength of elderly patients with sarcopenia in community. Chin. J. Clin. Healthc. 2021, 24, 90–94. [Google Scholar] [CrossRef]
- Zhao, T.; Gao, H.L.; Guo, N.Z.; Chen, Z.M.; Wu, X.Y.; He, D.L.; Wei, L.Q.; Shi, X.C.; Lv, W.Y. Effect of health education and whey protein combined with resistance exercise on the treatment of sarcopenia in middle-aged and elderly. Int. J. Clin. Exp. Med. 2022, 21, 90–94. [Google Scholar] [CrossRef]
- Kim, H.K.; Suzuki, T.; Saito, K.; Yoshida, H.; Kobayashi, H.; Kato, H.; Katayama, M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2012, 60, 458–465. [Google Scholar] [CrossRef]
- Kim, H.; Suzuki, T.; Saito, K.; Yoshida, H.; Kojima, N.; Kim, M.; Sudo, M.; Yamashiro, Y.; Tokimitsu, I. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. Geriatr. Gerontol. Int. 2013, 13, 458–465. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, M.; Kojima, N.; Fujino, K.; Hosoi, E.; Kobayashi, H.; Somekawa, S.; Niki, Y.; Yamashiro, Y.; Yoshida, H. Exercise and nutritional supplementation on community-dwelling elderly japanese women with sarcopenic obesity: A randomized controlled trial. J. Am. Med. Dir. Assoc. 2016, 17, 1011–1019. [Google Scholar] [CrossRef]
- Liao, C.D.; Tsauo, J.Y.; Lin, L.F.; Huang, S.W.; Ku, J.W.; Chou, L.C.; Liou, T.H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: A consort-compliant prospective randomized controlled trial. Medicine 2017, 96, e7115. [Google Scholar] [CrossRef]
- Jung, W.S.; Kim, Y.Y.; Park, H.Y. Circuit Training improvements in korean women with sarcopenia. Percept. Mot. Skills 2019, 126, 828–842. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, P.H.; Lin, L.F.; Liao, C.D.; Liou, T.H.; Huang, S.W. Effects of progressive elastic band resistance exercise for aged osteosarcopenic adiposity women. Exp. Gerontol. 2021, 147, 111272. [Google Scholar] [CrossRef]
- Seo, M.Y.; Jung, S.W.; Kim, S.W.; Lee, J.M.; Jung, H.C.; Song, J.K. Effects of 16 Weeks of Resistance Training on Muscle Quality and Muscle Growth Factors in Older Adult Women with Sarcopenia: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 6762. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Q.; Peng, N.; Zhou, M.; Liu, P.P.; Qi, X.L.; Wang, N.; Wang, G.; Wu, Z.P. Tai chi and whole-body vibrating therapy in sarcopenic men in advanced old age: A clinical randomized controlled trial. Eur. J. Ageing 2019, 16, 828–842. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.K.; Leng, X.; Hsu, F.C.; Kritchevsky, S.B.; Ding, J.; Earnest, C.P.; Ferrucci, L.; Goodpaster, J.; Guralnik, J.M.; Lenchik, L.; et al. The impact of sarcopenia on a physical activity intervention: The lifestyle Interventions and Independence for elders pilot study (life-p). J. Nutr. Health Aging 2014, 18, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Ng, S.S.M.; Ng, G.Y.F.; Lee, R.S.Y.; Lau, M.C.K.; Pang, M.Y.C. Whole-Body Vibration training improves muscle and physical performance in community dwelling with sarcopenia: A randomized controlled trial. Int. J. Phys. Ther. Rehabil. 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Evans, J.W. Periodized Resistance Training for Enhancing Skeletal Muscle Hypertrophy and Strength: A Mini-Review. Front. Physiol. 2019, 10, 13. [Google Scholar] [CrossRef]
- Brooks, G.A. Bioenergetics of exercising humans. Compr. Physiol. 2012, 2, 537–562. [Google Scholar] [CrossRef]
- Antoniak, A.E.; Greig, C.A. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults:a systematic review and Meta-analysis. BMJ Open 2017, 7, e014619. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.W. Research on the Intervention of Regular Fitness Exercise on Female’s Muscle Mass, Grip Strength and Pace. Master’s Thesis, Kunming Medical University, Kunming City, China, 2018; pp. 21–23. [Google Scholar]
- Chiara, M.; Francesco, P.; Corinna, S.; Pugliarello, R.; Zancanaro, C. Effects of whole-body vibration with or without localized radiofrequency on anthropometry, body composition, and motor performance in young nonobese women. J. Altern. Complement. Med. 2012, 18, 69–75. [Google Scholar] [CrossRef]
- Chiara, M.; Francesco, P.; Grazia, Z.M.; Paolo, M.; Carlo, Z. Ten-week whole-body vibration training improves body composition and muscle strength in obese women. Int. J. Medical Sci. 2013, 10, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.; Gil, R.; Wong, A.; Hooshmand, S.; Park, S.Y.; Vicil, F.; Gonzalez, M.A. Whole-body vibration training reduces arterial stiffness, blood pressure and sympathovagal balance in young overweight/obese women. Hypertens. Res. 2012, 35, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.Z.; Chen, P.J.; Zheng, L.F.; Xiao, W.H. Pathogenesis and treatment strategy of disuse muscular atrophy. Chin. J. Rehabil. 2017, 32, 1307–1313. [Google Scholar]
- Shen, L.B.; Shen, X. Research progress on the impact of sports on the elder’s muscle power. J. Sports Sci. 2016, 37, 49–51. [Google Scholar]
- Kirsten, E.B.; Christopher, S.; Gianni, P.; Steven, K.B.; Stuart, M.P. Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. J. Gerontol. 2015, 70, 1024–1029. [Google Scholar]
- Alessandra, M.; Stefania, B.; Elisa, M.M.; Jack, G.; Giovanni, Z.; Luigi, F.; Stefano, V. Combining gait speed and recall memory to predict survival in late life: Population-based study. J. Am. Geriatr. Soc. 2017, 65, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Dong, S.H.; Jeong, J.C.; Yoon, B. Effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex (pfc) on cognitive-motor dual control skills. Percept. Mot. Skills 2020, 127, 803–822. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Ren, D.H.; Ruan, M.F.; Li, Q.Q.; Hou, Q.P. Resistance exercise and prevention and treatment of sarcopenia. Zhejiang Sport Sci. 2021, 43, 87–107. [Google Scholar]
- Wu, T.T.; Zhao, Y.N. Associations between functional fitness and walking speed in older adults. Geriatr. Nurs. 2021, 42, 540–543. [Google Scholar] [CrossRef]
- Chu, S.F.; Liou, T.H.; Chen, H.C.; Huang, S.W.; Liao, C.D. Relative Efficacy of Weight Management, Exercise, and Combined Treatment for Muscle Mass and Physical Sarcopenia Indices in Adults with Overweight or Obesity and Osteoarthritis: A Network Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 1992. [Google Scholar] [CrossRef]
- Shen, Y.J.; Liu, D.; Li, S.Y.; He, Y.Z.; Tan, F.C.; Sun, X.L.; Li, D.P.; Xia, X.; Hao, Q.K. Effects of Exercise on Patients Important Outcomes in Older People With Sarcopenia: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Front. Med. 2022, 9, 811746. [Google Scholar] [CrossRef]
- Wen, P.T.; Zhang, R.L.; Hu, W.Q.; Wang, X.; Wu, J.M.; Li, H.J. Effect of Different Modes of Exercise on Sarcopenia in Older Adults: A Meta-analysis. Chin. J. Rehabil. Theory Pract. 2021, 27, 1291–1298. [Google Scholar]
- Zhao, Y.N.; Wu, T.T.; Wei, Y. Effects of starting position, distance and ending point in a walking speed test among older adults. Geriatr. Gerontol. Int. 2020, 20, 680–684. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Country | Sample (Intervention/Control) | Age (Mean ± SD) | Sex | Interventions | Dosage | Intensity | Control Group | Outcomes |
---|---|---|---|---|---|---|---|---|
Zhu, L.Y. 2019, China [14] | 77(40/37) | 74.5 ± 7.1 | Male (24%) | AT + RT | 40–50 min × 2 times/week × 12 weeks (16–20 h) | Monitored and adjusted by coach. | Maintain daily lifestyle | Hand grip strength, muscle mass of lower extremities, muscle mass of upper extremities, walking speed |
Karina, S.S.V. 2016, Brazil [15] | 31(16/15) | 72 ± 4.6 | Female | RT | 60 min × 2 times/week × 10 weeks (20 h) | Intensity between moderate and somewhat severe monitored by modified Borg Scale | Telephone monitoring | Knee extension strength, walking speed |
Iranzo, M.A. 2018, Spain [16] | 37(9,11/17) | 82.6 ± 9.1 | Male (25%) | RT | 30 min × 3 times/week × 12 weeks (18 h) | Resistance:40–60% max isometric muscle strength | Maintain daily lifestyle | Hand grip strength, walking speed |
Chen, H.T. 2017, China [26] | 60(15,15,15/15) | 68.9 ± 4.4 | Male (16%) | RT/AT/AT + RT | 60 min × 2 times/week × 8 weeks (16 h) | Resistance: 60–70% of the maximum repetitions aerobic: Moderate | Maintain daily lifestyle | Hand grip strength, knee extension strength, skeletal muscle mass |
Tsekoura, M. 2018, Greece [27] | 54(18,18/18) | 72.87 ± 7 | Male (13%) | AT + MT/AT + HT | AT + MT:40–50 min × 2 times/week × 12 weeks (16 h); AT + HT:30–35 min × 3 times/week × 12 weeks (18–21 h); | gradually increase: RPE from 6 to 20 | Maintain daily lifestyle | Hand grip strength, knee extension strength, fat-free mass, skeletal muscle mass, walking speed, functional mobility |
Wang, L.Z. 2019, China [28] | 80(20,20,20/20) | 65.1 ± 3.4 | Male (53.8%) | RT/AT/AT + RT | 20 min × 2 times/week × 8 weeks (5.4 h) | Moderate intensity: No obvious feeling of fatigue | Maintain daily lifestyle | Hand grip strength; knee extension strength |
Zhu, G.F. 2019, China [29] | 65(33/32) | 66.32 ± 10.80 | Male (50.1%) | Yi Jinjing exercise | 40 min × 7 times/week × 12 weeks (56 h) | No obvious feelings of fatigue | Health education | Hand grip strength |
Li, Z. 2020, China [30] | 121(62/59) | 73.73 ± 5.69 | Male (37.1%) | RT + OA | 20 min × 3 times/week × 12 weeks (18 h); 1 h × 3 times/week × 12 weeks (36 h) | RT:8 max rep.; OA: >800 steps in 10 min | Maintain daily lifestyle | Hand grip strength, appendicular muscle mass |
Shao, W.H. 2020, China [31] | 71(41/30) | 69.3 ± 13.4 | Male (63.4%) | RT | 30 min × 2 times/week × 24 weeks (24 h) | Moderate intensity | Health education | Hand grip strength, walking speed |
Zhou, S.P. 2020, China [32] | 40(20/20) | 73.0 ± 8.5 | Male (42.5%) | Ba duanjin exercise | 40 min × 5 times/week × 8 weeks (26.7 h) | Moderate intensity | Health education | Hand grip strength, functional mobility |
Fang, L. 2020, China [33] | 36(18/18) | 82.8 ± 8.5 | Male (33.3%) | Muscle-bone strengthening exercise | 30 min × 3 times/week × 24 weeks (36 h) | 60% maximum heart rate | Maintain daily lifestyle | Functional mobility |
Wang, G.H. 2021, China [34] | 54(26/28) | 70.4 ± 5.1 | Male (33.3%) | RT | 45 min × 3 times/week × 12 weeks (27 h) | Moderate: 50-70% 1RM | Maintain daily lifestyle | Hand grip strength, walking speed |
Zhao, T. 2022, China [35] | 40(20/20) | 63.2 ± 1.4 | Male (40.0%) | RT | 25 min × 14 times/week × 12 weeks (70 h) | 8RM (can be adjusted according to individual situation) | Health education | Hand grip strength, walking speed |
Kim, H. 2012, Japan [36] | 78(39/39) | 79.0 ± 2.9 | Female | RT + Balance + Gait training | 50 min × 2 times/week × 12 weeks (20 h) | Moderate: RPE = 12–14 | Health education | Knee extension strength, muscle mass of lower extremities, appendicular muscle mass, walking speed |
Kim, H. 2013, Japan [37] | 64(32/32) | 79.6 ± 4.2 | Female | RT + Balance + Gait training | 50 min × 2 times/week × 12 weeks (20 h) | Moderate: RPE = 12–14 | Health education | Hand grip strength, knee extension strength, Muscle mass of lower extremities, appendicular muscle mass, walking speed, functional mobility |
Kim, H. 2016, Japan [38] | 69(35/34) | 81.4 ± 4.3 | Female | AT + RT and weight-bearing training | 60 min × 2 times/week × 12 weeks (24 h) | AT: start at 40 watts and gradually increase; RT: beginning with 1 set of 10 repetitions to 3 sets. | Health education | Hand grip strength, knee extension strength, muscle mass of lower extremities, muscle mass of upper extremities, appendicular muscle mass, walking speed |
Liao, C.D. 2017, China [39] | 46(25/21) | 67.3 ± 5.2 | Female | RT | 35–40 min × 3 times/week × 12 weeks (21–24 h) | Moderate: RPE = 13 | No control | Hand grip strength, fat-free mass, functional mobility |
Jung, W.S. 2019, Korea [40] | 26(13/13) | 75.0 ± 3.9 | Female | AT + RT | 25–55 min × 3 times/week × 12 weeks (15–60 h) | 60–80% heart rate reserve | Maintain daily lifestyle | Fat-free muscle mass |
Lee, Y.H. 2021, China [41] | 27(15/12) | 70.13 ±4.41 | Female | RT | 40 min × 3 times/week × 12 weeks (24 h) | Moderate intensity: RPE = 12–14 | Allowed to exercise at home | Hand grip strength, functional mobility |
Seo, M.Y. 2021, Korea [42] | 27(14/13) | 70.3 ± 5.38 | Female | RT | 50 min × 3 times/week × 16 weeks (32.5 h) | 0—extremely easy to 10—extremely hard | Maintain daily lifestyle | Hand grip strength, functional mobility, walking speed, appendicular muscle mass, fat-free mass |
Zhu, Y.Q. 2019, China [43] | 79(24,28/27) | 89.5 ± 4. 4 | Male | Eight style TC/WBV | 20 min × 5 times/week × 8 weeks (13.3 h) | TC: Progressively increase; WBV: 5 groups/time, and 3 min/group | Maintain daily lifestyle | Hand grip strength, muscle mass of lower extremities, muscle mass of upper extremities |
Liu, C. K. 2014, America [44] | 33(16/17) | 77.5 ± 4.2 | No clear | AT + RT + Balance + Flexibility training | 1–8 week:3 times/week; 9–24 week:2 times/week | Moderate | Not clear | Walking speed |
Wei, N. 2016, China [45] | 40(20/20) | 75 ± 6 | No clear | WBV | 6 min × 3 times/week × 12 weeks (3.6 h) | 40 Hz/360 s per session; | Maintain daily lifestyle | Knee extension strength, walking speed, functional mobility |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huang, W.Y.; Zhao, Y. Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8212. https://doi.org/10.3390/ijerph19138212
Wang H, Huang WY, Zhao Y. Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(13):8212. https://doi.org/10.3390/ijerph19138212
Chicago/Turabian StyleWang, Haolin, Wendy Y. Huang, and Yanan Zhao. 2022. "Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 13: 8212. https://doi.org/10.3390/ijerph19138212
APA StyleWang, H., Huang, W. Y., & Zhao, Y. (2022). Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 19(13), 8212. https://doi.org/10.3390/ijerph19138212