Echocardiographic Assessment of Left Ventricular Function 10 Years after the Ultra-Endurance Running Event Eco-Trail de Paris® 2011
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nocon, M.; Hiemann, T.; Muller-Riemenschneider, F.; Thalau, F.; Roll, S.; Willich, S.N. Association of physical activity with all-cause and cardiovascular mortality: A systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 239–246. [Google Scholar] [CrossRef]
- Wang, W.; Schulze, C.J.; Suarez-Pinzon, W.L.; Dyck, J.R.; Sawicki, G.; Schulz, R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 2002, 106, 1543–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.M.; Skerrett, P.J. Physical activity and all-cause mortality: What is the dose-response relation? Med. Sci. Sports Exerc. 2001, 33 (Suppl. 6), S459–S471, discussion S93–S94. [Google Scholar] [CrossRef]
- Teramoto, M.; Bungum, T.J. Mortality and longevity of elite athletes. J. Sci. Med. Sport 2010, 13, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, A.K.; Poznanska, A. Mortality of top athletes, actors and clergy in Poland: 1924-2000 follow-up study of the long term effect of physical activity. Eur. J. Epidemiol. 2008, 23, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.L.; Kruger, M.L. Longevity of major league baseball players. Res. Sports Med. 2005, 13, 1–5. [Google Scholar] [CrossRef]
- Menotti, A.; Amici, E.; Gambelli, G.C.; Milazzotto, F.; Bellotti, P.; Capocaccia, R.; Giuli, B. Life expectancy in Italian track and field athletes. Eur. J. Epidemiol. 1990, 6, 257–260. [Google Scholar] [CrossRef]
- Parssinen, M.; Seppala, T. Steroid use and long-term health risks in former athletes. Sports Med. 2002, 32, 83–94. [Google Scholar] [CrossRef]
- Sarna, S.; Sahi, T.; Koskenvuo, M.; Kaprio, J. Increased life expectancy of world class male athletes. Med. Sci. Sports Exerc. 1993, 25, 237–244. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Olaso-Gonzalez, G.; Corella, D.; Gomez-Cabrera, M.C.; Vina, J. Increased average longevity among the “Tour de France” cyclists. Int. J. Sports Med. 2011, 32, 644–647. [Google Scholar] [CrossRef]
- Fogelholm, M.; Kaprio, J.; Sarna, S. Healthy lifestyles of former Finnish world class athletes. Med. Sci. Sports Exerc. 1994, 26, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Antero-Jacquemin, J.; Desgorces, F.D.; Dor, F.; Sedeaud, A.; Haïda, A.; LeVan, P.; Toussaint, J.-F. Row for your life: A century of mortality follow-up of French olympic rowers. PLoS ONE 2014, 9, e113362. [Google Scholar] [CrossRef]
- Antero-Jacquemin, J.; Rey, G.; Marc, A.; Dor, F.; Haïda, A.; Marck, A.; Berthelot, G.; Calmat, A.; Latouche, A.; Toussaint, J.F. Mortality in female and male French Olympians: A 1948–2013 cohort study. Am. J. Sports Med. 2015, 43, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.P.; Wai, J.P.M.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.D.; Lee, M.-C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, S.; Cook, N.; Buring, J.E.; Ridker, P.M.; Lee, I.M. Physical activity and reduced risk of cardiovascular events: Potential mediating mechanisms. Circulation 2007, 116, 2110–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, R. Lifestyle and mental health. Am. Psychol. 2011, 66, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Dishman, R.K.; Hales, D.P.; Pfeiffer, K.A.; Felton, G.A.; Saunders, R.; Ward, D.S.; Dowda, M.; Pate, R.R. Physical self-concept and self-esteem mediate cross-sectional relations of physical activity and sport participation with depression symptoms among adolescent girls. Health Psychol. 2006, 25, 396–407. [Google Scholar] [CrossRef]
- Elliott, M. Commentary on Viewpoint: Exercise and cardiovascular risk reduction: Time to update the rationale for exercise? Enhanced vascular function: A rationale for exercise and marker of cardiovascular health. J. Appl. Physiol. 2008, 105, 776. [Google Scholar] [CrossRef]
- Comassi, M.; Vitolo, E.; Pratali, L.; Del Turco, S.; Dellanoce, C.; Rossi, C.; Santini, E.; Solini, A. Acute effects of different degrees of ultra-endurance exercise on systemic inflammatory responses. Intern. Med. J. 2015, 45, 74–79. [Google Scholar] [CrossRef]
- Sandvik, L.; Erikssen, J.; Thaulow, E.; Erikssen, G.; Mundal, R.; Rodahl, K. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. N. Engl. J. Med. 1993, 328, 533–537. [Google Scholar] [CrossRef]
- Neilan, T.G.; Yoerger, D.M.; Douglas, P.S.; Marshall, J.E.; Halpern, E.F.; Lawlor, D.; Picard, M.H.; Wood, M.J. Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur. Heart J. 2006, 27, 1079–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, A.J.; Silverman, L.M.; Evans, W.J. Elevated skeletal muscle creatine kinase MB isoenzyme levels in marathon runners. JAMA 1983, 250, 2835–2837. [Google Scholar] [CrossRef] [PubMed]
- Venckunas, T.; Raugaliene, R.; Jankauskiene, E. Structure and function of distance runners’ heart. Medicina 2005, 41, 685–692. [Google Scholar] [PubMed]
- Ghorayeb, N.; Batlouni, M.; Pinto, I.M.; Dioguardi, G.S. [Left ventricular hypertrophy of athletes: Adaptative physiologic response of the heart]. Arq. Bras Cardiol. 2005, 85, 191–197. [Google Scholar] [CrossRef]
- Tulloh, L.; Robinson, D.; Patel, A.; Ware, A.; Prendergast, C.; Sullivan, D.; Pressley, L. Raised troponin T and echocardiographic abnormalities after prolonged strenuous exercise--the Australian Ironman Triathlon. Br. J. Sports Med. 2006, 40, 605–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouffroy, R.; Caille, V.; Perrot, S.; Vieillard-Baron, A.; Dubourg, O.; Mansencal, N. Changes of Cardiac Function During Ultradistance Trail Running. Am. J. Cardiol. 2015, 116, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Antero, J.; Sauliere, G.; Marck, A.; Toussaint, J.F. A Medal in the Olympics Runs in the Family: A Cohort Study of Performance Heritability in the Games History. Front. Physiol. 2018, 9, 1313. [Google Scholar] [CrossRef] [Green Version]
- Scheer, V.; Tiller, N.B.; Doutreleau, S.; Khodaee, M.; Knechtle, B.; Pasternak, A.; Rojas-Valverde, D. Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med. 2021, 52, 725–740. [Google Scholar] [CrossRef]
- Jouffroy, R.A.J.; Toussaint, J.F. Comment on: “Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review”. Sports Med. 2022, 52, 955–956. [Google Scholar] [CrossRef]
- McGavock, J.M.; Anderson, T.J.; Lewanczuk, R.Z. Sedentary lifestyle and antecedents of cardiovascular disease in young adults. Am. J. Hypertens. 2006, 19, 701–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, E.A.S.; Ferreira, L.E.S.; Cavalcanti, R.J.F.; Botelho Filho, C.A.L.; Lopes, M.R.; Barbosa, R.H.A. Nuances between sedentary behavior and physical inactivity: Cardiometabolic effects and cardiovascular risk. Rev. Assoc. Med. Bras. 2021, 67, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Toji, C.; Fukui, M.; Kazumi, T.; Date, C. The impact of sedentary lifestyle on risk factors for cardiovascular disease among Japanese young women. Nihon Koshu Eisei Zasshi. 2009, 56, 839–848. [Google Scholar] [PubMed]
- Franklin, B.A.; Rusia, A.; Haskin-Popp, C.; Tawney, A. Chronic Stress, Exercise and Cardiovascular Disease: Placing the Benefits and Risks of Physical Activity into Perspective. Int. J. Environ. Res. Public Health 2021, 18, 9922. [Google Scholar] [CrossRef]
- Di Fusco, S.A.; Spinelli, A.; Castello, L.; Mocini, E.; Gulizia, M.M.; Oliva, F.; Gabrielli, D.; Imperoli, G.; Colivicchi, F. Impact of Working from Home on Cardiovascular Health: An Emerging Issue with the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 11882. [Google Scholar] [CrossRef]
- Siegel, A.J.; Silverman, L.M.; Lopez, R.E. Creatine kinase elevations in marathon runners: Relationship to training and competition. Yale J. Biol. Med. 1980, 53, 275–279. [Google Scholar]
- Schnohr, P.; Grande, P.; Christiansen, C. Enzyme activities in serum after extensive exercise, with special reference to creatine kinase MB. Acta Med. Scand. 1980, 208, 229–231. [Google Scholar] [CrossRef]
- Apple, F.S.; Rogers, M.A.; Sherman, W.M.; Costill, D.L.; Hagerman, F.C.; Ivy, J.L. Profile of creatine kinase isoenzymes in skeletal muscles of marathon runners. Clin. Chem. 1984, 30, 413–416. [Google Scholar] [CrossRef]
- Eijsvogels, T.M.; Fernandez, A.B.; Thompson, P.D. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise? Physiol. Rev. 2016, 96, 99–125. [Google Scholar] [CrossRef]
- Brandt, C.; Pedersen, B.K. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J. Biomed. Biotechnol. 2010, 2010, 520258. [Google Scholar] [CrossRef]
- Carapeto, P.V.; Aguayo-Mazzucato, C. Effects of exercise on cellular and tissue aging. Aging 2021, 13, 14522–14543. [Google Scholar] [CrossRef] [PubMed]
- Morawin, B.; Tylutka, A.; Chmielowiec, J.; Zembron-Lacny, A. Circulating Mediators of Apoptosis and Inflammation in Aging; Physical Exercise Intervention. Int. J. Environ. Res. Public Health 2021, 18, 3165. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.; MacNeil, L.G.; Lally, J.S.; Ford, R.J.; Bujak, A.L.; Brar, I.K.; Kemp, B.; Raha, S.; Steinberg, G.; Tarnopolsky, M.A. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging. Aging Cell 2015, 14, 625–634. [Google Scholar] [CrossRef]
- Aguirre, L.E.; Villareal, D.T. Physical Exercise as Therapy for Frailty. Nestle Nutr. Inst. Workshop Ser. 2015, 83, 83–92. [Google Scholar] [PubMed] [Green Version]
- Gill, J.F.; Santos, G.; Schnyder, S.; Handschin, C. PGC-1alpha affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell 2018, 17, e12697. [Google Scholar] [CrossRef]
- Li, M.; Ning, B.; Wang, T. The mechanism and prevention of mitochondrial injury after exercise. J. Physiol. Biochem. 2021, 77, 215–225. [Google Scholar] [CrossRef]
- Saito, Y.; Chikenji, T.S.; Matsumura, T.; Nakano, M.; Fujimiya, M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat. Commun. 2020, 11, 889. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Lucia, A.; Levine, B.D. Relationship between strenuous exercise and cardiac “morbimortality”: Benefits outweigh the potential risks. Trends Cardiovasc. Med. 2016, 26, 241–244. [Google Scholar] [CrossRef]
- Fagard, R.; Van den Broeke, C.; Amery, A. Left ventricular dynamics during exercise in elite marathon runners. J. Am. Coll. Cardiol. 1989, 14, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Fagard, R.H. Impact of different sports and training on cardiac structure and function. Cardiol. Clin. 1997, 15, 397–412. [Google Scholar] [CrossRef]
- Levine, B.D. Can intensive exercise harm the heart? The benefits of competitive endurance training for cardiovascular structure and function. Circulation 2014, 130, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Pelliccia, A.; Maron, B.J.; Spataro, A.; Proschan, M.A.; Spirito, P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N. Engl. J. Med. 1991, 324, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Arbab-Zadeh, A.; Perhonen, M.; Howden, E.; Peshock, R.M.; Zhang, R.; Adams-Huet, B.; Haykowsky, M.J.; Levine, B.D. Cardiac remodeling in response to 1 year of intensive endurance training. Circulation 2014, 130, 2152–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Andrea, A.; Limongelli, G.; Caso, P.; Sarubbi, B.; Della Pietra, A.; Brancaccio, P.; Cice, G.; Scherillo, M.; Limongelli, F.; Calabrò, R. Association between left ventricular structure and cardiac performance during effort in two morphological forms of athlete’s heart. Int. J. Cardiol. 2002, 86, 177–184. [Google Scholar] [CrossRef]
- George, K.P.; Warburton, D.; Oxborough, D.; Scott, J.; Esch, B.T.; Williams, K.; Charlesworth, S.; Foulds, H.; Oxborough, A.; Hoffman, M.; et al. Upper limits of physiological cardiac adaptation in ultramarathon runners. J. Am. Coll. Cardiol. 2011, 57, 754–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morganroth, J.; Maron, B.J.; Henry, W.L.; Epstein, S.E. Comparative left ventricular dimensions in trained athletes. Ann. Intern. Med. 1975, 82, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Culasso, F.; Di Paolo, F.M.; Maron, B.J. Physiologic left ventricular cavity dilatation in elite athletes. Ann. Intern. Med. 1999, 130, 23–31. [Google Scholar] [CrossRef]
- Predel, H.G. Marathon run: Cardiovascular adaptation and cardiovascular risk. Eur. Heart J. 2014, 35, 3091–3098. [Google Scholar] [CrossRef]
- Utomi, V.; Oxborough, D.; Ashley, E.; Lord, R.; Fletcher, S.; Stembridge, M.; Shave, R.; Hoffman, M.D.; Whyte, G.; Somauroo, J.; et al. Predominance of normal left ventricular geometry in the male ‘athlete’s heart’. Heart 2014, 100, 1264–1271. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Perez, L.M.; Joyner, M.J.; Lollgen, H.; Lucia, A. Endurance Exercise and the Heart: Friend or Foe? Sports Med. 2016, 46, 459–466. [Google Scholar] [CrossRef]
- Merghani, A.; Malhotra, A.; Sharma, S. The U-shaped relationship between exercise and cardiac morbidity. Trends Cardiovasc. Med. 2016, 26, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Marijon, E.; Tafflet, M.; Antero-Jacquemin, J.; El Helou, N.; Berthelot, G.; Celermajer, D.S.; Bougouin, W.; Combes, N.; Hermine, O.; Empana, J.P.; et al. Mortality of French participants in the Tour de France (1947–2012). Eur. Heart J. 2013, 34, 3145–3150. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, G.; Johnson, S.; Noirez, P.; Antero, J.; Marck, A.; Desgorces, F.-D.; Pifferi, F.; Carter, P.A.; Spedding, M.; Manoux, A.S.; et al. The age-performance relationship in the general population and strategies to delay age related decline in performance. Arch. Public Health 2019, 77, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marck, A.; Antero, J.; Berthelot, G.; Johnson, S.; Sedeaud, A.; Leroy, A.; Marc, A.; Spedding, M.; Di Meglio, J.M.; Toussaint, J.F. Age-Related Upper Limits in Physical Performances. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 591–599. [Google Scholar] [CrossRef]
- Manson, J.E.; Greenland, P.; LaCroix, A.Z.; Stefanick, M.L.; Mouton, C.P.; Oberman, A.; Perri, M.G.; Sheps, D.S.; Pettinger, M.B.; Siscovick, D.S. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N. Engl. J. Med. 2002, 347, 716–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.M.; Rexrode, K.M.; Cook, N.R.; Manson, J.E.; Buring, J.E. Physical activity and coronary heart disease in women: Is “no pain, no gain” passe? JAMA 2001, 285, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
- Oguma, Y.; Sesso, H.D.; Paffenbarger, R.S., Jr.; Lee, I.M. Physical activity and all cause mortality in women: A review of the evidence. Br. J. Sports Med. 2002, 36, 162–172. [Google Scholar] [CrossRef]
- Sesso, H.D.; Paffenbarger, R.S., Jr.; Lee, I.M. Physical activity and coronary heart disease in men: The Harvard Alumni Health Study. Circulation 2000, 102, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Möhlenkamp, S.; Lehmann, N.; Breuckmann, F.; Bröcker-Preuss, M.; Nassenstein, K.; Halle, M.; Budde, T.; Mann, K.; Barkhausen, J.; Heusch, G.; et al. Running: The risk of coronary events: Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur. Heart J. 2008, 29, 1903–1910. [Google Scholar] [CrossRef] [Green Version]
- Vigorito, C.; Giallauria, F. Effects of exercise on cardiovascular performance in the elderly. Front. Physiol. 2014, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Husing, A.; Kaaks, R. Lifestyle risk factors and residual life expectancy at age 40: A German cohort study. BMC Med. 2014, 12, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, B.; Millar, L.; Somauroo, J.; George, K.; Sharma, S.; La Gerche, A.; Forsythe, L.; Oxborough, D. Left ventricular remodeling in elite and sub-elite road cyclists. Scand. J. Med. Sci. Sports 2020, 30, 1132–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year 2011 | Year 2021 | |||
---|---|---|---|---|
Variable | Mean ± SD | Range (Min–Max Value) | Mean ± SD | Range (Min–Max Value) |
Age (years) | 43 ± 7 | 25–61 | 53 ± 7 | 42–71 |
Height (cm) | 176 ± 7 | 167–188 | 177 ± 6 | 165–188 |
Weight (kg) | 74 ± 8 | 61–82 | 69 ± 6 | 60–80 |
Body mass index (kg/m2) | 22.4 ± 1.1 | 18.9–25.2 | 22.1 ± 1.6 | 18.9–25.2 |
Training (hours/week) | 5 ± 4 | 1–16 | 6 ± 3 | 2–14 |
Training (km/week) | 45 ± 18 | 20–80 | 48 ± 19 | 15–80 |
Variable | Year 2011 | Year 2021 | p-Value |
Heart rate (beats/min) | 63 ± 10 | 66 ± 15 | 0.282 |
End-diastolic measurements: | |||
Interventricular septum (mm) | 9.6 ± 1.4 | 10.2 ± 1.8 | 0.670 |
Posterior wall (mm) | 8.4 ± 1.4 | 9.3 ± 1.9 | 0.512 |
Left ventricular diameter (mm) | 51.5 ± 5.4 | 52.0 ± 6.6 | 0.435 |
Aortic diameter (mm) | 31.8 ± 4.4 | 33.4 ± 5.6 | 0.660 |
End-systolic measurements: | |||
Left ventricular diameter (mm) | 35.0 ± 5.4 | 34.5 ± 6.2 | 0.368 |
Left atrial diameter (mm) | 35.6 ± 4.5 | 37.0 ± 9.6 | 0.386 |
Left ventricular ejection fraction (%) | 65.3 ± 10.6 | 67.5 ± 6.7 | 0.777 |
Doppler measurements: | |||
Aortic ejection flow (m/s) | 1.3 ± 0.4 | 1.1 ± 0.2 | 0.093 |
Aortic velocity–time integral (cm) | 20.8 ± 3.1 | 21.6 ± 4.5 | 0.302 |
Mitral E wave (m/s) | 0.84 ± 0.15 | 0.89 ± 0.25 | 0.337 |
Mitral A wave (m/s) | 0.56 ± 0.15 | 0.67 ± 0.18 | 0.666 |
Mitral E/A ratio | 1.59 ± 0.55 | 1.40 ± 0.50 | 0.952 |
Mitral E wave deceleration time (ms) | 188 ± 33 | 203 ± 47 | 0.076 |
Average mitral TDI e’ wave (m/s) | 0.16 ± 0.03 | 0.13 ± 0.04 | 0.454 |
Average mitral TDI a’ wave (m/s) | 0.10 ± 0.03 | 0.09 ± 0.03 | 0.823 |
Average mitral TDI S wave (m/s) | 0.11 ± 0.26 | 0.11 ± 0.29 | 0.896 |
Mitral E/e’ ratio | 5.6 ± 1.6 | 6.5 ± 3.5 | 0.224 |
Tricuspid TDI e’ wave (m/s) | 0.12 ± 0.02 | 0.12 ± 0.03 | 0.549 |
Tricuspid TDI a’ wave (m/s) | 0.11 ± 0.03 | 0.11 ± 0.03 | 0.110 |
Tricuspid TDI S wave (m/s) | 0.09 ± 0.01 | 0.09 ± 0.03 | 0.163 |
Two-dimensional strain measurements: | |||
Global peak systolic strain (%) | −22.0 ± 2.9 | −21.0 ± 2.9 | 0.192 |
A3C peak systolic strain (%) | −21.8 ± 3.3 | −20.5 ± 3.9 | 0.979 |
A4C peak systolic strain (%) | −23.3 ± 2.5 | −22.3 ± 2.8 | 0.075 |
A2C peak systolic strain (%) | −20.9 ± 2.8 | −20.3 ± 2.0 | 0.307 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouffroy, R.; Benaceur, O.; Toussaint, J.-F.; Antero, J. Echocardiographic Assessment of Left Ventricular Function 10 Years after the Ultra-Endurance Running Event Eco-Trail de Paris® 2011. Int. J. Environ. Res. Public Health 2022, 19, 8268. https://doi.org/10.3390/ijerph19148268
Jouffroy R, Benaceur O, Toussaint J-F, Antero J. Echocardiographic Assessment of Left Ventricular Function 10 Years after the Ultra-Endurance Running Event Eco-Trail de Paris® 2011. International Journal of Environmental Research and Public Health. 2022; 19(14):8268. https://doi.org/10.3390/ijerph19148268
Chicago/Turabian StyleJouffroy, Romain, Oussama Benaceur, Jean-François Toussaint, and Juliana Antero. 2022. "Echocardiographic Assessment of Left Ventricular Function 10 Years after the Ultra-Endurance Running Event Eco-Trail de Paris® 2011" International Journal of Environmental Research and Public Health 19, no. 14: 8268. https://doi.org/10.3390/ijerph19148268
APA StyleJouffroy, R., Benaceur, O., Toussaint, J. -F., & Antero, J. (2022). Echocardiographic Assessment of Left Ventricular Function 10 Years after the Ultra-Endurance Running Event Eco-Trail de Paris® 2011. International Journal of Environmental Research and Public Health, 19(14), 8268. https://doi.org/10.3390/ijerph19148268