Supporting Design to Develop Rural Revitalization through Investigating Village Microclimate Environments: A Case Study of Typical Villages in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. ENVI-Met Simulation
2.2.1. Introduction of ENVI-Met
2.2.2. Architecture Model Setup
2.2.3. Field Measurement and Meteorological Parameters
2.3. Outdoor Thermal Comfort
- M—Metabolic rate, W/s;
- W—Work Metabolism, W/s;
- Pa—Partial pressure of water vapor in ambient air, Pa;
- ta—Air temperature, °C;
- fcl—The ratio of the surface area of the clothed body to the naked body;
- ts—Mean radiant temperature, °C;
- tcl—Human body surface temperature, °C;
- hc—Convective heat exchange coefficient, W/s·m2·°C.
2.4. Data Analysis
3. Results
3.1. Air Temperature
3.1.1. Measured Air Temperature
3.1.2. ENVI-Met Model Validation
3.1.3. Changes in Air Temperature in Villages
3.2. Multiple Regression Model Setup
3.2.1. Model Results
3.2.2. Normality
3.2.3. The Relationship between H/W and AT
3.3. PMV
4. Discussion
5. Conclusions
- (1)
- ENVI-met can effectively predict the village microclimate environment due to the correlation coefficients being greater than 0.8 and the MAPE ranging from 2.16% to 3.79%.
- (2)
- Air temperature on the W-E roads is higher than that of the S-N, especially in the morning, supplementing the gap in village microclimate and providing guidance for rural land use.
- (3)
- The regression model showed that the H/W was the main factor affecting village microclimate compared with wind speed and PBC, revealing that optimizing H/W is an essential way to improve the rural outdoor thermal environment. Moreover, this study also found that H/W and air temperature had a relatively strong negative correlation (Pearson −0.65) when H/W was between 0.52 and 0.93.
- (4)
- The downwind area of the village based on the local dominant wind is a relatively comfortable area based on assessment of outdoor thermal comfort.
- (1)
- Rural policy makers should give priority to commercial spaces with a large flow population on S-N roads, such as morning markets, food streets, etc., mainly as the air temperature on S-N roads is lower than that of E-W, especially in the morning, and the lower air temperature could create a more comfortable living environment.
- (2)
- It is recommended that densely populated facilities be designed in the downwind area of a village’s built-up area based on prevailing winds, planning facilities with fewer personnel in the upwind area, because the downwind area is a relatively comfortable area compared to the upwind area. For example, give priority to hotels in the downwind area, and plan parking lots or green landscapes in the upwind area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, L. Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements. Landsc. Urban Plan. 2017, 167, 463–472. [Google Scholar] [CrossRef]
- Zheng, S.; Guldmann, J.-M.; Liu, Z.; Zhao, L. Influence of trees on the outdoor thermal environment in subtropical areas: An experimental study in Guangzhou, China. Sustain. Cities Soc. 2018, 42, 482–497. [Google Scholar] [CrossRef]
- United Nations. What Is Climate Change? Available online: https://www.un.org/en/climatechange/what-is-climate-change (accessed on 18 March 2020).
- Lamberti, G.; Salvadori, G.; Leccese, F.; Fantozzi, F.; Bluyssen, P.M. Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability 2021, 13, 10315. [Google Scholar] [CrossRef]
- Baruti, M.M.; Johansson, E.; Yahia, M.W. Urbanites’ outdoor thermal comfort in the informal urban fabric of warm-humid Dar es Salaam, Tanzania. Sustain. Cities Soc. 2020, 62, 102380. [Google Scholar] [CrossRef]
- Odame, E.A.; Li, Y.; Zheng, S.; Vaidyanathan, A.; Silver, K. A ssessing Heat-Related Mortality Risks among Rural Populations: A Systematic Review and Meta-Analysis of Epidemiological Evidence. Int. J. Environ. Res. Public Health 2018, 15, 1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, C.; Moore, C.; Chersich, M.; Hester, R.; Schwerdtle, P.N.; Mbayo, G.; Akong, C.; Butler, C. A Transdisciplinary Approach to Address Climate Change Adaptation for Human Health and Well-Being in Africa. Int. J. Environ. Res. Public Health 2021, 18, 4258. [Google Scholar] [CrossRef]
- Xin, K.; Zhao, J.; Ma, X.; Han, L.; Liu, Y.; Zhang, J.; Gao, Y. Effect of urban underlying surface on PM2.5 vertical distribution based on UAV in Xi’an, China. Environ. Monit. Assess. 2021, 193, 312. [Google Scholar] [CrossRef]
- Han, L.; Zhao, J.; Gao, Y.; Gu, Z.; Xin, K.; Zhang, J. Spatial distribution characteristics of PM2.5 and PM10 in Xi’an City predicted by land use regression models. Sustain. Cities Soc. 2020, 61, 102329. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liao, Y.-J.; Yao, C.-K.; Honjo, T.; Wang, C.-K.; Lin, T.-P. The application of a high-density street-level air temperature observation network (HiSAN): The relationship between air temperature, urban development, and geographic features. Sci. Total Environ. 2019, 685, 710–722. [Google Scholar] [CrossRef]
- Charlson, F.; Ali, S.; Augustinavicius, J.; Benmarhnia, T.; Birch, S.; Clayton, S.; Fielding, K.; Jones, L.; Juma, D.; Snider, L.; et al. Global priorities for climate change and mental health research. Environ. Int. 2022, 158, 106984. [Google Scholar] [CrossRef] [PubMed]
- Hami, A.; Abdi, B.; Zarehaghi, D.; Bin Maulan, S. Assessing the thermal comfort effects of green spaces: A systematic review of methods, parameters, and plants’ attributes. Sustain. Cities Soc. 2019, 49, 101634. [Google Scholar] [CrossRef]
- Ha, J.; Choi, Y.; Lee, S.; Oh, K. Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach. Int. J. Environ. Res. Public Health 2020, 17, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panepinto, D.; Riggio, V.A.; Zanetti, M. Analysis of the Emergent Climate Change Mitigation Technologies. Int. J. Environ. Res. Public Health 2021, 18, 6767. [Google Scholar] [CrossRef] [PubMed]
- Aram, F.; Solgi, E.; García, E.H.; Mosavi, A.; Várkonyi-Kóczy, A.R. The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies 2019, 12, 3904. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fan, S.; Li, K.; Zhang, Y.; Dong, L. Microclimate in an urban park and its influencing factors: A case study of Tiantan Park in Beijing, China. Urban Ecosyst. 2020, 24, 767–778. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Asawa, T.; Murakami, A.; Kim, H.G.; Lee, M.K.; Lee, H.S. Influence of urban form on the cooling effect of a small urban river. Landsc. Urban Plan. 2019, 183, 26–35. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.-D.; Xu, J. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban For. Urban Green. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban Green Space and Its Impact on Human Health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Worlitschek, J. A novel approach for estimating residential space heating demand. Energy 2018, 159, 294–301. [Google Scholar] [CrossRef]
- Li, B.; You, L.; Zheng, M.; Wang, Y.; Wang, Z. Energy consumption pattern and indoor thermal environment of residential building in rural China. Energy Built Environ. 2020, 1, 327–336. [Google Scholar] [CrossRef]
- He, W.; Zhang, L.; Yuan, C. Future air temperature projection in high-density tropical cities based on global climate change and urbanization—A study in Singapore. Urban Clim. 2022, 42, 101115. [Google Scholar] [CrossRef]
- Austin, E.K.; Rich, J.L.; Kiem, A.S.; Handley, T.; Perkins, D.; Kelly, B.J. Concerns about climate change among rural residents in Australia. J. Rural Stud. 2020, 75, 98–109. [Google Scholar] [CrossRef]
- Ma, L.; Chen, M.; Che, X.; Fang, F. Farmers’ Rural-To-Urban Migration, Influencing Factors and Development Framework: A Case Study of Sihe Village of Gansu, China. Int. J. Environ. Res. Public Health 2019, 16, 877. [Google Scholar] [CrossRef] [Green Version]
- Xin, K.; Zhao, J.; Wang, T.; Gao, W.; Zhang, Q. Architectural Simulations on Spatio-Temporal Changes of Settlement Outdoor Thermal Environment in Guanzhong Area, China. Buildings 2022, 12, 345. [Google Scholar] [CrossRef]
- Yurui, L.; Luyin, Q.; Qianyi, W.; Karácsonyi, D. Towards the evaluation of rural livability in China: Theoretical framework and empirical case study. Habitat Int. 2020, 105, 102241. [Google Scholar] [CrossRef]
- Miao, S.; Zhan, W.; Lai, J.; Li, L.; Du, H.; Wang, C.; Wang, C.; Li, J.; Huang, F.; Liu, Z.; et al. Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background. Sustain. Cities Soc. 2022, 82, 103874. [Google Scholar] [CrossRef]
- Xia, H.; Chen, Y.; Song, C.; Li, J.; Quan, J.; Zhou, G. Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature. Remote Sens. Environ. 2022, 273, 112972. [Google Scholar] [CrossRef]
- Gong, J.; Jian, Y.; Chen, W.; Liu, Y.; Hu, Y. Transitions in rural settlements and implications for rural revitalization in Guangdong Province. J. Rural Stud. 2019, 93, 359–366. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.; Yao, X.; Chai, J. Assessing the Performance of Land Consolidation Projects in Different Modes: A Case Study in Jianghan Plain of Hubei Province, China. Int. J. Environ. Res. Public Health 2020, 17, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xingyu, L.; Yukun, G. Research on the function evolution and driving mechanism of rural homestead in Luxian County under the “Rural Revitalization”. Procedia Comput. Sci. 2022, 199, 969–976. [Google Scholar] [CrossRef]
- Tao, Z.; Guanghui, J.; Wenqiu, M.; Guangyong, L.; Yanbo, Q.; Yingying, T.; Qinglei, Z.; Yaya, T. Dying villages to prosperous villages: A perspective from revitalization of idle rural residential land (IRRL). J. Rural Stud. 2021, 84, 45–54. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Xu, C. Land consolidation and rural revitalization in China: Mechanisms and paths. Land Use Policy 2020, 91, 104379. [Google Scholar] [CrossRef]
- Huang, Z.M.; Liang, Y.M. Digital protection and inheritance of ancient villages in southwest minority areas under the strategy of rural revitalization. Technol. Forecast. Soc. Chang. 2020, 160, 120238. [Google Scholar] [CrossRef]
- Liu, C.; Xu, M. Characteristics and Influencing Factors on the Hollowing of Traditional Villages—Taking 2645 Villages from the Chinese Traditional Village Catalogue (Batch 5) as an Example. Int. J. Environ. Res. Public Health 2021, 18, 12759. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chou, R.-J. Rural revitalization of Xiamei: The development experiences of integrating tea tourism with ancient village preservation. J. Rural Stud. 2022, 90, 42–52. [Google Scholar] [CrossRef]
- Santos-Roldán, L.; Castillo Canalejo, A.M.; Berbel-Pineda, J.M.; Palacios-Florencio, B. Sustainable Tourism as a Source of Healthy Tourism. Int. J. Environ. Res. Public Health 2020, 17, 5353. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- López-Cabeza, V.; Galán-Marín, C.; Rivera-Gómez, C.; Fernández, J.R. Courtyard microclimate ENVI-met outputs deviation from the experimental data. Build. Environ. 2018, 144, 129–141. [Google Scholar] [CrossRef]
- Ouyang, W.; Sinsel, T.; Simon, H.; Morakinyo, T.E.; Liu, H.; Ng, E. Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Build. Environ. 2021, 207, 108427. [Google Scholar] [CrossRef]
- ENVI-Met. Available online: http://www.envi-met.com (accessed on 21 February 2022).
- Aboelata, A. Assessment of green roof benefits on buildings’ energy-saving by cooling outdoor spaces in different urban densities in arid cities. Energy 2020, 219, 119514. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Yu, K.; Wang, D. Evaluating the impact of the building density and height on the block surface temperature. Build. Environ. 2019, 168, 106493. [Google Scholar] [CrossRef]
- Labdaoui, K.; Mazouz, S.; Moeinaddini, M.; Cools, M.; Teller, J. The Street Walkability and Thermal Comfort Index (SWTCI): A new assessment tool combining street design measurements and thermal comfort. Sci. Total Environ. 2021, 795, 148663. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhao, Q.; Zhou, N. Improvement strategies for thermal comfort of a city block based on PET Simulation—A case study of Dalian, a cold-region city in China. Energy Build. 2022, 261, 111557. [Google Scholar] [CrossRef]
- Wai, K.-M.; Tan, T.Z.; Morakinyo, T.; Chan, T.-C.; Lai, A. Reduced effectiveness of tree planting on micro-climate cooling due to ozone pollution—A modeling study. Sustain. Cities Soc. 2020, 52, 101803. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Fang, Z.; Feng, X.; Lin, Z. Investigation of PMV Model for Evaluation of the Outdoor Thermal Comfort. Procedia Eng. 2017, 205, 2457–2462. [Google Scholar] [CrossRef]
- Wu, Z.; Kong, F.; Wang, Y.; Sun, R.; Chen, L. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 1217, Erratum in Int. J. Environ. Res. Public Health 2017, 14, 156. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Yuizono, T. Climate-adaptive landscape design: Microclimate and thermal comfort regulation of station square in the Hokuriku Region, Japan. Build. Environ. 2022, 212, 108813. [Google Scholar] [CrossRef]
- Abdallah, A.S.H.; Hussein, S.W.; Nayel, M. The impact of outdoor shading strategies on student thermal comfort in open spaces between education building. Sustain. Cities Soc. 2020, 58, 102124. [Google Scholar] [CrossRef]
- Zhou, X.; Lai, D.; Chen, Q. Evaluation of thermal sensation models for predicting thermal comfort in dynamic outdoor and indoor environments. Energy Build. 2021, 238, 110847. [Google Scholar] [CrossRef]
- Shin, H.; Kang, M.; Mun, S.-H.; Kwak, Y.; Huh, J.-H. A study on changes in occupants’ thermal sensation owing to CO2 concentration using PMV and TSV. Build. Environ. 2020, 187, 107413. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, Y.; Mao, Y.; Yang, Y.; Fu, C.; Fang, Z. Analysis of SET* and PMV to evaluate thermal comfort in prefab construction site offices: Case study in South China. Case Stud. Therm. Eng. 2021, 26, 101137. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Dong, L. Influence of a large urban park on the local urban thermal environment. Sci. Total Environ. 2018, 622, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Givoni, B. Impact of planted areas on urban environmental quality: A review. Atmos. Environ. Part B Urban Atmos. 1991, 25, 289–299. [Google Scholar] [CrossRef]
- Crank, P.; Middel, A.; Wagner, M.; Hoots, D.; Smith, M.; Brazel, A. Validation of seasonal mean radiant temperature simulations in hot arid urban climates. Sci. Total Environ. 2020, 749, 141392. [Google Scholar] [CrossRef]
- Forouzandeh, A. Prediction of surface temperature of building surrounding envelopes using holistic microclimate ENVI-met model. Sustain. Cities Soc. 2021, 70, 102878. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y. Poverty alleviation through land assetization and its implications for rural revitalization in China. Land Use Policy 2021, 105, 105418. [Google Scholar] [CrossRef]
- Huang, Y.; Hui, E.C.; Zhou, J.; Lang, W.; Chen, T.; Li, X. Rural Revitalization in China: Land-Use Optimization through the Practice of Place-making. Land Use Policy 2020, 97, 104788. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Yuan, X.; Shao, Y.; Li, Y.; Liu, Y.; Wang, Y.; Wei, X.; Wang, X.; Zhao, Y. Cultivated land quality improvement to promote revitalization of sandy rural areas along the Great Wall in northern Shaanxi Province, China. J. Rural Stud. 2019, 93, 367–374. [Google Scholar] [CrossRef]
- Gao, J.; Wu, B. Revitalizing traditional villages through rural tourism: A case study of Yuanjia Village, Shaanxi Province, China. Tour. Manag. 2017, 63, 223–233. [Google Scholar] [CrossRef]
- Yang, J.; Yang, R.; Chen, M.H.; Su CH, J.; Zhi, Y.; Xi, J. Effects of rural revitalization on rural tourism. J. Hosp. Tour. Manag. 2021, 47, 35–45. [Google Scholar] [CrossRef]
Parameter Type | Parameter Name | Setting Value |
---|---|---|
Buildings | Roof | Thickness (m): 0.30 Albedo (%): 0.50 emissivity (%): 0.90 Heat capacity [L/(m3·K)·10−6]: 1300 Heat conductivity (W/m·K): 0.84 Density (kg/m3): 1900 Roughness (m): 0.02 |
Wall | Thickness (m): 0.30 Albedo (%): 0.30 Emissivity (%): 0.90 Heat capacity [L/(m3·K)·10−6]: 1050 Heat conductivity (W/m·K): 0.81 Density (kg/m3): 1800 Roughness (m): 0.02 | |
Artificial surfaces | Concrete | Thickness (m): 0.30 Heat capacity [L/(m3·K)·10−6]: 2.25 Heat conductivity (W/m·K): 1.05 Roughness (m): 0.01 Albedo (%): 0.20 Emissivity (%): 0.90 |
Natural surfaces | Soil | Heat capacity [L/(m3·K)·10−6]: 1.21 Heat conductivity (W/m·K): 0.00 Roughness (m): 0.02 Albedo (%): 0.20 Emissivity (%): 0.96 |
Settings | Parameter | Value |
---|---|---|
Simulation settings | Total simulation time | 36 h |
Output time interval | 60 min | |
Number of nested grids | 10 | |
Initial parameter settings | Simulation start date | 21 July 2018 |
Simulation start time | 07:00 | |
Initial temperature | 26.0 °C | |
Wind speed at 10 m | 2.3 m/s | |
Wind direction at 10 m | 60° N-E | |
Relative humidity at 2 m | 40% | |
Specific humidity at 2500 m | 7 g/kg |
Body Parameters | Clothing Parameters | Person’s Metabolism |
---|---|---|
Age (year): 35 Gender: Male Weight (kg): 75.00 Height (m): 1.75 Surface area (DuBois area): 1.91 m2 | Static clothing insulation (clo): 0.90 | Total metabolic rate (W): 164.49 (=86.21 W/m2) (met): 1.48 |
Number | CJ Village | DN Village | ||
---|---|---|---|---|
PBC | H/W | PBC | H/W | |
Site 1 | 9.11% | 0.59 | 48.56% | 0.62 |
Site 2 | 42.56% | 0.68 | 49.38% | 0.69 |
Site 3 | 31.11% | 0.53 | 25.62% | 0.66 |
Site 4 | 41.58% | 0.65 | 55.31% | 0.63 |
Site 5 | 26.73% | 0.68 | 47.43% | 0.62 |
Site 6 | 33.72% | 0.61 | 56.82% | 0.73 |
Site 7 | 30.26% | 0.68 | 17.82% | 0.71 |
Site 8 | 40.73% | 0.45 | 40.94% | 0.38 |
Site 9 | 33.44% | 0.54 | 46.47% | 0.65 |
Location | Site 1 | Site 2 | Site 3 | Site 4 |
---|---|---|---|---|
Pearson | 0.856 ** | 0.843 ** | 0.929 ** | 0.959 ** |
MAPE | 3.53% | 2.91% | 3.79% | 2.16% |
R2 | Adjusted R2 | Std. Error of the Estimate | F | Sig. F | ||
---|---|---|---|---|---|---|
0.696 | 0.630 | 0.09042 | 10.660 | 0.001 | ||
Independent variable | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | |
B | Std. Error | Beta | VIF | |||
Constant | 32.843 | 0.287 | 114.243 | 0.000 | ||
Wind speed | −0.334 | 0.128 | −0.459 | −2.613 | 0.020 | 1.419 |
H/W | 0.447 | 0.149 | 0.487 | 3.006 | 0.009 | 1.208 |
PBC | 0.002 | 0.002 | 0.154 | 0.950 | 0.358 | 1.214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, K.; Zhao, J.; Wang, T.; Gao, W. Supporting Design to Develop Rural Revitalization through Investigating Village Microclimate Environments: A Case Study of Typical Villages in Northwest China. Int. J. Environ. Res. Public Health 2022, 19, 8310. https://doi.org/10.3390/ijerph19148310
Xin K, Zhao J, Wang T, Gao W. Supporting Design to Develop Rural Revitalization through Investigating Village Microclimate Environments: A Case Study of Typical Villages in Northwest China. International Journal of Environmental Research and Public Health. 2022; 19(14):8310. https://doi.org/10.3390/ijerph19148310
Chicago/Turabian StyleXin, Kai, Jingyuan Zhao, Tianhui Wang, and Weijun Gao. 2022. "Supporting Design to Develop Rural Revitalization through Investigating Village Microclimate Environments: A Case Study of Typical Villages in Northwest China" International Journal of Environmental Research and Public Health 19, no. 14: 8310. https://doi.org/10.3390/ijerph19148310
APA StyleXin, K., Zhao, J., Wang, T., & Gao, W. (2022). Supporting Design to Develop Rural Revitalization through Investigating Village Microclimate Environments: A Case Study of Typical Villages in Northwest China. International Journal of Environmental Research and Public Health, 19(14), 8310. https://doi.org/10.3390/ijerph19148310