Wind Dynamic Characteristics and Wind Tunnel Simulation of Subgrade Sand Hazard in the Shannan Wide Valley of the Sichuan–Tibet Railway
Abstract
:1. Introduction
2. Research Methods
2.1. Field Observation
2.2. Wind Tunnel Simulation Experiment
3. Results
3.1. Dynamic Wind Environment
3.2. Formation Rule of Sand Hazard
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, W.S.; Li, H.D.; Sun, M.; Jiang, J. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Glob. Planet. Chang. 2012, 86, 37–44. [Google Scholar] [CrossRef]
- Zou, X.Y.; Li, S.; Zhang, C.L.; Dong, G.R.; Dong, Y.X.; Yan, P. Desertification and control plan in the Tibet Autonomous Region of China. J. Arid. Environ. 2002, 51, 183–198. [Google Scholar]
- Dong, G.R.; Dong, Y.X.; Li, S.; Jin, J.; Jin, H.L.; Liu, Y.Z. The causes and developmental trend of desertification in the middle reaches of the Yarlung Zangbo River and its two tributaries in Xizang. Chin. Geogr. Sci. 1995, 5, 355–364. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.S.; Shen, T. Spatial distribution and formation mechanism of aeolian sand in the middle reaches of the Yarlung Zangbo River. J. Mt. Sci. 2019, 16, 1987–2000. [Google Scholar] [CrossRef]
- Dong, M.; Yan, P.; Liu, B.L.; Wu, W.; Meng, X.N.; Ji, X.R.; Wang, Y.; Wang, Y.J. Distribution patterns and morphological classification of climbing dunes in the Qinghai-Tibet Plateau. Aeolian Res. 2018, 35, 58–68. [Google Scholar] [CrossRef]
- Shi, X.N.; Zhang, F.; Lu, X.X.; Wang, Z.Y.; Gong, T.L.; Wang, G.X.; Zhang, H.H. Spatiotemporal variations of suspended sediment transport in the upstream and midstream of the Yarlung Tsangpo River (the upper Brahmaputra), China. Earth Surf. Process. Landf. 2018, 43, 432–443. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zou, X.Y.; Yang, P.; Dong, Y.X.; Li, S.; Wei, X.H.; Yang, S.; Pan, X.H. Wind tunnel test and 137Cs tracing study on wind erosion of several soils in Tibet. Soil Tillage Res. 2007, 94, 269–282. [Google Scholar] [CrossRef]
- Liu, Z.M.; Zhao, W.Z. Shifting sand control in central Tibet. Ambio 2001, 30, 376–380. [Google Scholar]
- Dong, Z.B.; Hu, G.Y.; Qian, G.Q.; Lu, J.F.; Zhang, Z.C.; Luo, W.Y.; Lyu, P. High-Altitude Aeolian Research on the Tibetan Plateau. Rev. Geophys. 2017, 55, 864–901. [Google Scholar] [CrossRef]
- Stauch, G. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth-Sci. Rev. 2015, 150, 393–408. [Google Scholar] [CrossRef]
- Yang, M.X.; Yao, T.D.; Gou, X.H.; Hirose, N.; Fujii, H.Y.; Hao, L.S.; Levia, D.F. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chin. Sci. Bull. 2007, 52, 136–139. [Google Scholar] [CrossRef]
- Wang, G.X.; Yao, J.Z.; Guo, Z.G.; Wu, Q.B.; Wang, Y.B. Changes in permafrost ecosystem under the influences of human engineering activities and its enlightenment to railway construction. Chin. Sci. Bull. 2004, 49, 1741–1750. [Google Scholar] [CrossRef]
- Shen, W.S.; Zhang, H.; Zou, C.X.; Cao, X.Z.; Tang, X.Y. Approaches to prediction of impact of Qinghai–Tibet Railway construction on alpine ecosystems alongside and its recovery. Chin. Sci. Bull. 2004, 49, 834–841. [Google Scholar] [CrossRef]
- Xie, S.B.; Qu, J.J.; Pang, Y.J.; Zhang, K.C.; Wang, C. Dynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway. Geomat. Nat. Hazards Risk 2021, 12, 153–165. [Google Scholar] [CrossRef]
- Dun, H.C.; Xin, G.W.; Huang, N.; Shi, G.T.; Zhang, J. Wind-Tunnel Studies on Sand Sedimentation around Wind-Break Walls of Lanxin High-Speed Railway II and Its Prevention. Appl. Sci. 2021, 11, 5989. [Google Scholar] [CrossRef]
- Bruno, L.; Horvat, M.; Raffaele, L. Windblown sand along railway infrastructures: A review of challenges and mitigation measures. J. Wind Eng. Ind. Aerodyn. 2018, 177, 340–365. [Google Scholar] [CrossRef]
- Xie, S.B.; Qu, J.J.; Lai, Y.M.; Pang, Y.J. Formation mechanism and suitable controlling pattern of sand hazards at Honglianghe River section of Qinghai–Tibet Railway. Nat. Hazards 2015, 76, 855–871. [Google Scholar] [CrossRef]
- Sarafrazi, V.; Talaee, M.R. Simulation of wall barrier properties along a railway track during a sandstorm. Aeolian Res. 2020, 46, 100626. [Google Scholar] [CrossRef]
- Lewis, S.R.; Riley, S.; Fletcher, D.I.; Lewis, R. Optimisation of a railway sanding system for optimal grain entrainment into the wheel-rail contact. Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit 2018, 232, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Mehdipour, R.; Baniamerian, Z. A new approach in reducing sand deposition on railway tracks to improve transportation. Aeolian Res. 2019, 41, 100537. [Google Scholar] [CrossRef]
- Raffaele, L.; Bruno, L. Windblown sand action on civil structures: Definition and probabilistic modelling. Eng. Struct. 2019, 178, 88–101. [Google Scholar] [CrossRef]
- Zakeri, J.A. Investigation on railway track maintenance in sandy-dry areas. Struct. Infrastruct. Eng. 2012, 8, 135–140. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Zhang, C.L.; Li, Q.; Pan, X.H. Grain-size distribution of surface sediments of climbing and falling dunes in the Zedang valley of the Yarlung Zangbo River, southern Tibetan plateau. J. Earth Syst. Sci. 2019, 128, 11. [Google Scholar] [CrossRef] [Green Version]
- Fryberger, S.G.; Dean, G. Dune forms and wind regime. In Mckee E D. A Study of Global Sand Seas; U.S. Geological Survey Professional Papers; US Government Printing Office: Washington, WA, USA, 1979; Volume 1052, pp. 137–169. [Google Scholar]
- Ling, Y.Q. Engineering calculation of maxmum possible sand transporting quantity. J. Desert Res. 1997, 17, 362–368, (In Chinese with English Abstract). [Google Scholar]
- Sarafrazi, V.; Talaee, M.R. Numerical simulation of sand transfer in wind storm using the Eulerian-Lagrangian two-phase flow model. Eur. Phys. J. E 2019, 42, 45. [Google Scholar] [CrossRef]
- Li, S.Y.; Wang, D.; Lei, J.Q. Spatial distribution of sand drift disasters on road surface in the hinterland of the Taklimakan Desert. Arid. Land Geogr. 2005, 28, 93–97. (In Chinese) [Google Scholar]
- Wang, X.M.; Chen, G.T. Efficiencies and reasonable width for the mechanical sand-prevention system along the Tarim desert highway. J. Arid. Land Resour. Environ. 1997, 11, 28–35. (In Chinese) [Google Scholar]
- Sarafrazi, V.; Talaee, M.R. Comparing performances of a triangular embankment and a rigid wall-type barrier in sandstorms using simulation and a wind tunnel test. Eur. Phys. J. E 2020, 43, 74. [Google Scholar] [CrossRef]
- Xie, S.B.; Qu, J.J.; Han, Q.J.; Pang, Y.J. Experimental definition and its significance on the minimum safe distance of blown sand between the proposed Qinghai–Tibet Expressway and the existing Qinghai–Tibet Railway. Sci. China-Technol. Sci. 2020, 63, 2664–2676. [Google Scholar] [CrossRef]
- Zhang, K.C.; Qu, J.J.; Han, Q.J.; Xie, S.B.; Kai, K.; Niu, Q.H.; An, Z.S. Wind tunnel simulation of windblown sand along China’s Qinghai–Tibet Railway. Land Degrad. Dev. 2014, 25, 244–250. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, C.L.; Wu, X.X.; Wang, X.M.; Kang, L.Q. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau. Geomorphology 2014, 224, 27–38. [Google Scholar] [CrossRef]
- Draut, A.E. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA. J. Geophys. Res.-Earth Surf. 2012, 117, 1–22. [Google Scholar] [CrossRef]
- Li, S.; Dong, G.R.; Shen, J.Y.; Yang, P.; Liu, X.W.; Wang, Y.; Jin, H.L.; Wang, Q. Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangbo River valley. Sci. China Ser. D-Earth Sci. 1999, 42, 272–284. [Google Scholar] [CrossRef]
- Gabarrou, S.; Le Cozannet, G.; Parteli, E.J.R.; Pedreros, R.; Guerber, E.; Millescamps, B.; Mallet, C.; Oliveros, C. Modelling the retreat of a coastal dune under changing winds. J. Coast. Res. 2018, 85, 166–170. [Google Scholar] [CrossRef]
- Liu, X.C.; Kang, Y.D.; Chen, H.N.; Lu, H. Application of a high-precision aeolian sand collector in field wind and sand surveys. Int. J. Environ. Res. Public Health 2021, 18, 7393. [Google Scholar] [CrossRef]
- Tsoar, H.; Parteli, E.J.R. Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: A discussion. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Raffaele, L.; Bruno, L. Windblown sand mitigation along railway megaprojects: A comparative study. Struct. Eng. Int. 2020, 30, 355–364. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, G.D.; Yu, M.H.; Gao, G.L.; Zhao, Y.Y.; Wang, L.; Wang, Y.Z. Application of boundary layer displacement thickness in wind erosion protection evaluation: Case study of a salix psammophila sand barrier. Int. J. Environ. Res. Public Health 2019, 16, 592. [Google Scholar] [CrossRef] [Green Version]
- Bouarfa, S.; Bellal, S.A. Assessment of the aeolian sand dynamics in the region of Ain Sefra (Western Algeria), using wind data and satellite imagery. Arab. J. Geosci. 2018, 11, 56. [Google Scholar]
- Xie, S.B.; Qu, J.J.; Zhang, K.C.; Han, Q.J.; Pang, Y.J. The mechanism of sand damage at the Fushaliang section of the Liuyuan–Golmud Expressway. Aeolian Res. 2021, 48, 100648. [Google Scholar] [CrossRef]
- Horvata, M.; Bruno, L.; Khris, S. CWE study of wind flow around railways: Effects of embankment and track system on sand sedimentation. J. Wind Eng. Ind. Aerodyn. 2021, 208, 104476. [Google Scholar] [CrossRef]
- Wang, W.B.; Dun, H.C.; He, W.; Huang, N. Wind Tunnel Measurements of Surface Shear Stress on an Isolated Dune Downwind a Bridge. Appl. Sci. 2020, 10, 4022. [Google Scholar] [CrossRef]
- Huang, N.; Gong, K.; Xu, B.; Zhao, J.; Dun, H.C.; He, W.; Xin, G.W. Investigations into the law of sand particle accumulation over railway subgrade with wind-break wall. Eur. Phys. J. E 2019, 42, 145. [Google Scholar] [CrossRef]
- He, W.; Huang, N.; Xu, B.; Wang, W.B. Numerical simulation of wind-sand movement in the reversed flow region of a sand dune with a bridge built downstream. Eur. Phys. J. E 2018, 41, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ding, G.D.; Yu, M.H.; Gao, G.L.; Zhao, Y.Y.; Wu, G.H.; Wang, L. Effect of straw checkerboards on wind proofing, sand fixation, and ecological restoration in shifting sandy land. Int. J. Environ. Res. Public Health 2018, 15, 2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month (Year/Month) | RDD (°) | Direction | RA (°) | Direction |
---|---|---|---|---|
2019/11 | 105.83 | ESE | 105.82 | ESE |
2019/12 | 96.88 | E | 95.97 | E |
2020/01 | 122.97 | ESE | 127.58 | SE |
2020/02 | 179.06 | S | 179.33 | S |
2020/03 | 126.56 | SE | 125.75 | SE |
2020/04 | 233.89 | SW | 230.40 | SW |
2020/05 | 262.36 | W | 262.16 | W |
2020/06 | 256.18 | WSW | 255.62 | WSW |
2020/07 | 265.94 | W | 266.37 | W |
2020/08 | 260.52 | W | 259.60 | W |
2020/09 | 257.95 | WSW | 257.78 | WSW |
2020/10 | 270.97 | W | 271.11 | W |
Wind speed range (m·s−1) | 5–6 | 6–7 | 7–8 | 8–9 | 9–10 | 10–11 | 11–12 | 12–13 | 13–14 |
November 2019 to October 2020 Q (kg·m−1·a−1) | 2.98 | 21.05 | 28.72 | 19.39 | 10.41 | 4.79 | 3.51 | 0.91 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Zhang, X.; Pang, Y. Wind Dynamic Characteristics and Wind Tunnel Simulation of Subgrade Sand Hazard in the Shannan Wide Valley of the Sichuan–Tibet Railway. Int. J. Environ. Res. Public Health 2022, 19, 8341. https://doi.org/10.3390/ijerph19148341
Xie S, Zhang X, Pang Y. Wind Dynamic Characteristics and Wind Tunnel Simulation of Subgrade Sand Hazard in the Shannan Wide Valley of the Sichuan–Tibet Railway. International Journal of Environmental Research and Public Health. 2022; 19(14):8341. https://doi.org/10.3390/ijerph19148341
Chicago/Turabian StyleXie, Shengbo, Xian Zhang, and Yingjun Pang. 2022. "Wind Dynamic Characteristics and Wind Tunnel Simulation of Subgrade Sand Hazard in the Shannan Wide Valley of the Sichuan–Tibet Railway" International Journal of Environmental Research and Public Health 19, no. 14: 8341. https://doi.org/10.3390/ijerph19148341
APA StyleXie, S., Zhang, X., & Pang, Y. (2022). Wind Dynamic Characteristics and Wind Tunnel Simulation of Subgrade Sand Hazard in the Shannan Wide Valley of the Sichuan–Tibet Railway. International Journal of Environmental Research and Public Health, 19(14), 8341. https://doi.org/10.3390/ijerph19148341