Effects of Environmental Concentrations of Total Phosphorus on the Plankton Community Structure and Function in a Microcosm Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Turbidity Measurement
2.3. Plankton Sampling and Determination
2.4. Functional Parameter Measurement
2.5. Data Analysis
3. Results
3.1. Responses of Plankton Community Structure to TP
3.1.1. Responses of Phytoplankton Community Structure
3.1.2. Responses of Zooplankton Community Structure
3.2. Responses of Plankton Community Functional Endpoints to TP
4. Discussion
4.1. Plankton Community Structure Succession along the TP Gradients
4.2. Effects of TP on the Functional Endpoints of Plankton Community
4.3. Implications for the Environmental Management of TP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.F.; Wang, J.; Liao, J.Q.; Sun, J.H.; Huang, Y. The threshold responses of phytoplankton community to nutrient gradient in a shallow eutrophic Chinese lake. Ecol. Indic. 2016, 61, 258–267. [Google Scholar] [CrossRef]
- Qin, G.S.; Liu, J.W.; Xu, S.G.; Sun, Y. Pollution source apportionment and water quality risk evaluation of a drinking water reservoir during flood seasons. Int. J. Environ. Health 2021, 18, 1873. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Qin, L.H.; Bao, L.L.; Li, Y.Y.; Li, X.Y. Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources. Environ. Sci. Pollut. Res. 2016, 23, 21008–21019. [Google Scholar] [CrossRef]
- Ma, J.R.; Qin, B.Q.; Paerl, H.W.; Brookes, J.D.; Wu, P.; Zhou, J.; Deng, J.M.; Guo, J.S.; Li, Z. Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China. Environ. Sci. Pollut. Res. 2015, 22, 5041–5049. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.Q.; Zhu, G.W.; Gao, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Van den Brink, P.J.; Tarazona, J.V.; Solomon, K.R.; Knacker, T.; Van den Brink, N.W.; Brock, T.C.M.; Hoogland, J.P. The use of terrestrial and aquatic microcosms and mesocosms for the ecological risk assessment of veterinary medicinal products. Environ. Toxicol. Chem. 2005, 24, 820–829. [Google Scholar] [CrossRef]
- Pereira, A.S.; Cerejeira, M.J.; Daam, M.A. Toxicity of environmentally realistic concentrations of chlorpyrifos and terbuthylazine in indoor microcosms. Chemosphere 2017, 182, 348–355. [Google Scholar] [CrossRef]
- Rico, A.; Dimitrov, M.R.; Van Wijngaarden, R.P.A.; Satapornvanit, K.; Smidt, H.; Van den Brink, P.J. Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. Aquat. Toxicol. 2014, 147, 92–104. [Google Scholar] [CrossRef]
- Nys, C.; Van Regenmortel, T.; De Schamphelaere, K. The effects of nickel on the structure and functioning of a freshwater plankton community under high dissolved organic carbon conditions: A microcosm experiment. Environ. Toxicol. Chem. 2019, 38, 1923–1939. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Huang, T.; Ning, C.W.; Sun, T.T.; Tao, P.L.; Wang, J.; Sun, Q.Y. Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China. J. Environ. Sci. 2023, 124, 769–781. [Google Scholar] [CrossRef]
- Cao, X.F.; Wang, J.; Jiang, D.L.; Sun, J.H.; Huang, Y.; Luan, S.J. Establishment of stream nutrient criteria by comparing reference conditions with ecological thresholds in a typical eutrophic lake basin. Environ. Sci. Process. Impacts 2017, 19, 1554–1562. [Google Scholar] [CrossRef]
- Kumar, P.S.; Kumaraswami, M.; Rao, G.D.; Ezhilarasan, P.; Sivasankar, R.; Rao, V.R.; Ramu, K. Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea. Cont. Shelf Res. 2018, 161, 20–28. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Hall, N.S.; Wu, Y. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environ. Sci. Technol. 2015, 49, 1051–1059. [Google Scholar] [CrossRef]
- Nwankwegu, A.S.; Li, Y.P.; Huang, Y.N.; Wei, J.; Norgbey, E.; Lai, Q.Y.; Sarpong, L.; Wang, K.; Ji, D.B.; Yang, Z.J.; et al. Nutrient addition bioassay and phytoplankton community structure monitored during autumn in Xiangxi Bay of Three Gorges Reservoir, China. Chemosphere 2020, 247, 125960. [Google Scholar] [CrossRef]
- Havens, K.E. Lake eutrophication and plankton food webs. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 73–80. [Google Scholar]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.W.; Qin, B.Q.; Li, Y.P.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef]
- He, H.; Chen, K.Q.; Du, Y.X.; Li, K.Y.; Liu, Z.W.; Jeppesen, E.; Sondergaard, M. Increased nitrogen loading boosts summer phytoplankton growth by alterations in resource and zooplankton control: A mesocosm study. Front. Environ. Sci. 2021, 9, 772314. [Google Scholar] [CrossRef]
- Yang, C.H.; Yang, P.; Geng, J.; Yin, H.B.; Chen, K.N. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environ. Pollut. 2020, 262, 114292. [Google Scholar] [CrossRef]
- He, H.; Kang, Y.H.; Liu, Z.W. Nitrogen inputs enhance phytoplankton growth during sediment resuspension events: A mesocosm study. Hydrobiologia 2015, 744, 297–305. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Buyukates, Y.; Roelke, D. Influence of pulsed inflows and nutrient loading on zooplankton and phytoplankton community structure and biomass in microcosm experiments using estuarine assemblages. Hydrobiologia 2005, 548, 233–249. [Google Scholar] [CrossRef]
- Rose, V.; Rollwagen-Bollens, G.; Bollens, S.M. Interactive effects of phosphorus and zooplankton grazing on cyanobacterial blooms in a shallow temperate lake. Hydrobiologia 2017, 788, 345–359. [Google Scholar] [CrossRef]
- Rothenberger, M.B.; Calomeni, A.J. Complex interactions between nutrient enrichment and zooplankton in regulating estuarine phytoplankton assemblages: Microcosm experiments informed by an environmental dataset. J. Exp. Mar. Biol. Ecol. 2016, 480, 62–73. [Google Scholar] [CrossRef]
- Gusha, M.N.C.; Dalu, T.; Wasserman, R.J.; McQuaid, C.D. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Sci. Total Environ. 2018, 651, 410–418. [Google Scholar] [CrossRef]
- Groendahl, S.; Fink, P. Consumer species richness and nutrients interact in determining producer diversity. Sci. Rep. 2017, 7, 44869. [Google Scholar] [CrossRef] [Green Version]
- Fleeger, J.W.; Carman, K.R.; Nisbet, R.M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 2003, 317, 207–233. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development. Guidance Document on Simulated Guidance Document on Simulated Freshwater Lentic Field Tests (Outdoor Microcosms and Mesocosms); Series on Testing and Assessment; ENV/JM/MONO(2006)17; OECD Environment Directorate: Paris, France, 2006; p. 37. [Google Scholar]
- Bai, X.; Jiang, Y.M.; Jiang, Z.D.; Zhu, L.; Feng, J.F. Nutrient potentiate the responses of plankton community structure and metabolites to cadmium: A microcosm study. J. Hazard. Mater. 2022, 430, 128506. [Google Scholar] [CrossRef]
- Ma, Z.L.; Fang, T.X.; Thring, R.W.; Li, Y.B.; Yu, H.G.; Zhou, Q.; Zhao, M. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Harmful Algae 2015, 48, 21–29. [Google Scholar] [CrossRef]
- Ding, Y.Q.; Qin, B.Q.; Deng, J.M.; Ma, J.R. Effects of episodic sediment resuspension on phytoplankton in Lake Taihu: Focusing on photosynthesis, biomass and community composition. Aquat. Sci. 2017, 79, 617–629. [Google Scholar] [CrossRef]
- Wu, P.; Lu, Y.J.; Lu, Y.; Dai, J.Y.; Huang, T.J. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu. Water Environ. Res. 2020, 92, 138–148. [Google Scholar] [CrossRef]
- Jakobsen, H.H.; Blanda, E.; Staehr, P.A.; Hojgard, J.K.; Rayner, T.A.; Pedersen, M.F.; Jepsen, P.M.; Hansen, B.W. Development of phytoplankton communities: Implications of nutrient injections on phytoplankton composition, pH and ecosystem production. J. Exp. Mar. Biol. Ecol. 2015, 473, 81–89. [Google Scholar] [CrossRef]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Ecology and Environment of the People’s Republic of China. Report on the State of the Ecology and Environment in China 2020. 2022. Available online: https://english.mee.gov.cn/Resources/Reports/soe/ (accessed on 13 May 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. Environmental Quality Standards for Surface Water, GB 3838. 2002. Available online: http://english.mee.gov.cn/Resources/standards/water_environment/quality_standard/200710/t20071024_111792.shtml (accessed on 13 May 2022). (In Chinese)
- State Environmental Protection Administration of China. Water and Wastewater Monitoring Analysis Method; China Environmental Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Water Quality-Determination of Turbidity, GB 13200-91. 1991. Available online: https://english.mee.gov.cn/Resources/standards/water_environment/method_standard2/200807/t20080709_125374.shtml (accessed on 13 May 2022). (In Chinese)
- Freiry, R.F.; Gouvea, A.; Becker, J.; Lansac-Toha, F.A.; Lansac-Toha, F.M.; Pires, M.M.; Stenert, C.; Maltchik, L. Community structure and concordance patterns among zooplankton life stages in subtropical temporary ponds. Aquat. Ecol. 2020, 54, 257–270. [Google Scholar] [CrossRef]
- Xie, M.D.; Sun, Y.X.; Feng, J.F.; Gao, Y.F.; Zhu, L. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model. Aquat. Toxicol. 2019, 210, 106–116. [Google Scholar] [CrossRef]
- Inyang, A.I.; Wang, Y.S. Phytoplankton diversity and community responses to physicochemical variables in mangrove zones of Guangzhou Province, China. Ecotoxicology 2020, 29, 650–668. [Google Scholar] [CrossRef]
- del Arco, A.; Alvarez-Manzaneda, I.; Funes, A.; Perez-Martinez, C.; de Vicente, I. Assessing the toxic effects of magnetic particles used for lake restoration on phytoplankton: A community-based approach. Ecotoxicol. Environ. Saf. 2021, 207, 111288. [Google Scholar] [CrossRef]
- Van den Brink, P.J.; Ter Braak, C.J.F. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 1999, 18, 138–148. [Google Scholar] [CrossRef]
- Lobson, C.; Luong, K.; Seburn, D.; White, M.; Hann, B.; Prosser, R.S.; Wong, C.S.; Hanson, M.L. Fate of thiamethoxam in mesocosms and response of the zooplankton community. Sci. Total Environ. 2018, 637, 1150–1157. [Google Scholar] [CrossRef]
- Van den Brink, P.J.; Hattink, J.; Bransen, F.; Van Donk, E.; Brock, T.C.M. Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquat. Toxicol. 2000, 48, 251–264. [Google Scholar] [CrossRef]
- Cheshmedjiev, S.; Gecheva, G.; Belkinova, D.; Varadinova, E.; Dimitrova-Dyulgerova, I.; Mladenov, R.; Soufi, R.; Pavlova, M.; Pehlivanov, L. Assessment of ecological status and preliminary results on reference conditions in alpine glacial lakes (Bulgaria)-A contribution to the implementation of the Water Framework Directive. Biotechnol. Biotechnol. Equip. 2013, 27, 3522–3528. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, Y.C.; Wang, M.; Zhang, J.Y.; Chen, Q.W.; Liu, D.S. Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa. Water Res. 2021, 196, 117048. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.Q.; Liu, Y.D.; Li, D.H.; Dauta, A. Growth and antioxidant system of the cyanobacterium Synechococcus elongatus in response to microcystin-RR. Hydrobiologia 2005, 534, 23–29. [Google Scholar] [CrossRef]
- Sedmak, B.; Kosi, G. The role of microcystins in heavy cyanobacterial bloom formation. J. Plankton Res. 1998, 20, 1421. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fan, D.L.; Zhou, L.J.; Gu, W.; Ge, H.H.; Zhu, W. Ecological hazard assessment of tetrabromobisphenol A based on microcosm approach. Environ. Pollut. Control. 2021, 43, 533–538, 545. (In Chinese) [Google Scholar]
- Camargo, J.A.; Alonso, A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.S.; Sun, S.C. Phytoplankton-zooplankton dynamics vary with nutrients: A microcosm study with the cyanobacterium Coleofasciculus chthonoplastes and cladoceran Moina micrura. J. Plankton Res. 2014, 36, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef]
- You, J.Q.; Mallery, K.; Hong, J.R.; Hondzo, M. Temperature effects on growth and buoyancy of Microcystis aeruginosa. J. Plankton Res. 2018, 40, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Colina, M.; Calliari, D.; Carballo, C.; Kruk, C. A trait-based approach to summarize zooplankton-phytoplankton interactions in freshwaters. Hydrobiologia 2016, 767, 221–233. [Google Scholar] [CrossRef]
- Kruk, C.; Huszar, V.L.M.; Peeters, E.T.H.M.; Bonilla, S.; Costa, L.; Lurling, M.; Reynolds, C.S.; Scheffer, M. A morphological classification capturing functional variation in phytoplankton. Freshw. Biol. 2010, 55, 614–627. [Google Scholar] [CrossRef]
- Boersma, M. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr. 2000, 45, 1157–1161. [Google Scholar] [CrossRef]
- Ganguly, D.; Robin, R.S.; Vardhan, K.V.; Muduli, P.R.; Abhilash, K.R.; Patra, S.; Subramanian, B.R. Variable response of two tropical phytoplankton species at different salinity and nutrient condition. J. Exp. Mar. Biol. Ecol. 2013, 440, 244–249. [Google Scholar] [CrossRef]
- Isbell, F.; Tilman, D.; Polasky, S.; Binder, S.; Hawthorne, P. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol. Lett. 2013, 16, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.L.; Ishizaka, J.; Yang, M.M.; Ouyang, L.L.; Yin, Y.E.; Ma, Z.L. Changes in community structure and photosynthetic activities of total phytoplankton species during the growth, maintenance, and dissipation phases of a Prorocentrum donghaiense bloom. Harmful Algae 2019, 82, 35–43. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Hu, B.; Zhao, W.H.; Cui, D.Y.; Tan, L.J.; Wang, J.T. Effects of increasing nutrient disturbances on phytoplankton community structure and biodiversity in two tropical seas. Mar. Pollut. Bull. 2018, 135, 239–248. [Google Scholar] [CrossRef]
- Hansen, B. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 1994, 39, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Ger, K.A.; Hansson, L.A.; Lurling, M. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshw. Biol. 2014, 59, 1783–1798. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [Green Version]
- Perron, M.C.; Qiu, B.S.; Boucher, N.; Bellemare, F.; Juneau, P. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae. Toxicon 2011, 59, 567–577. [Google Scholar] [CrossRef]
- Gao, K.S. Research Methods in Aquatic Environmental Physiology; China Science Publishing & Media Ltd. Press: Beijing, China, 2018; p. 85. (In Chinese) [Google Scholar]
- Knauer, K.; Hommen, U. Sensitivity, variability, and recovery of functional and structural endpoints of an aquatic community exposed to herbicides. Ecotoxicol. Environ. Saf. 2012, 78, 178–183. [Google Scholar] [CrossRef]
- Shi, X.L.; Li, S.N.; Wei, L.J.; Qin, B.Q.; Brookes, J.D. CO2 alters community composition of freshwater phytoplankton: A microcosm experiment. Sci. Total Environ. 2017, 607, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.B.; Li, F.Y.; Wang, Y.J.; Kong, Y. Estimating the nutrient thresholds of a typical tributary in the Liao River basin, Northeast China. Sci. Rep. 2018, 8, 3810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.C.; Meng, W.; Zhao, X.L.; Li, H.X.; Zhang, R.Q.; Cao, Y.J.; Liao, H.Q. China embarking on development of its own national water quality criteria system. Environ. Sci. Technol. 2010, 44, 7992–7993. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.H.; Mu, Y.S.; Leung, K.M.Y.; Su, H.L.; Wu, F.C.; Chang, H. China is establishing its water quality standards for enhancing protection of aquatic life in freshwater ecosystems. Environ. Sci. Policy 2021, 124, 413–422. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Jiang, Z.; Fang, Y.; Zhu, L.; Feng, J. Effects of Environmental Concentrations of Total Phosphorus on the Plankton Community Structure and Function in a Microcosm Study. Int. J. Environ. Res. Public Health 2022, 19, 8412. https://doi.org/10.3390/ijerph19148412
Bai X, Jiang Z, Fang Y, Zhu L, Feng J. Effects of Environmental Concentrations of Total Phosphorus on the Plankton Community Structure and Function in a Microcosm Study. International Journal of Environmental Research and Public Health. 2022; 19(14):8412. https://doi.org/10.3390/ijerph19148412
Chicago/Turabian StyleBai, Xue, Zhendong Jiang, Yuan Fang, Lin Zhu, and Jianfeng Feng. 2022. "Effects of Environmental Concentrations of Total Phosphorus on the Plankton Community Structure and Function in a Microcosm Study" International Journal of Environmental Research and Public Health 19, no. 14: 8412. https://doi.org/10.3390/ijerph19148412
APA StyleBai, X., Jiang, Z., Fang, Y., Zhu, L., & Feng, J. (2022). Effects of Environmental Concentrations of Total Phosphorus on the Plankton Community Structure and Function in a Microcosm Study. International Journal of Environmental Research and Public Health, 19(14), 8412. https://doi.org/10.3390/ijerph19148412