Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. Study Area
2.2. Mechanism of CCD of SEBs and EEBs
2.3. Construction of Indicator System
2.4. Data Sources
2.5. Method
2.5.1. Index Standardization and Weight Determination
- (1)
- Data standardization
- (2)
- Weight calculation
2.5.2. Analysis of the CCD Model
- (1)
- Comprehensive evaluation index
- (2)
- CCD model
3. Results
3.1. Analysis of the Development Level of the Socioeconomic Benefits (SEBs) and Eco-Environmental Benefits (EEBs) Systems
3.1.1. Analysis of Comprehensive the Development Level of the SEBs System
3.1.2. Analysis of the Comprehensive Development Level of the EEBs System
3.2. CCD Analysis of SEBs and EEBs Systems
3.3. Type Analysis of CCD of SEBs and EEBs Systems
4. Discussion
5. Conclusions
- (1)
- The Koktokay Global Geopark’s SEBs showed a fluctuating upward trend during the study period; this process trended from fast to slow. The change in the speed of the comprehensive evaluation level of SEBs was faster than that of the whole; specifically, 2005–2008 was a period of rapid development.
- (2)
- The Koktokay Global Geopark’s EEBs remained stable but slightly fluctuated during the study period, showing a slightly U-shaped evolution trend. In particular, it declined from 2009 to 2012, during which the development of geotourism not only led to economic growth but also to the deterioration of the eco-environment, causing issues such as water and air pollution and decreases in biodiversity. The comprehensive development index of the EEBs of the Koktokay Global Geopark fell to its lowest point in 2012, then gradually improved and stabilized as the eco-environmental protection of the geopark strengthened.
- (3)
- In terms of changes in the CCD between the SEBs and EEBs, overall, we observed an upward fluctuation: the value increased from 0.3814 in 2005 to 0.5015 in 2018, indicating that the two systems were developing in an increasingly coordinated direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikolova, V.; Sinnyovsky, D. Geoparks in the legal framework of the EU countries. Tour. Manag. Perspect. 2019, 29, 141–147. [Google Scholar] [CrossRef]
- Farsani, N.T.; Coelho, C.O.; Costa, C.M.; Amrikazemi, A. Geo-knowledge management and geoconservation via geoparks and geotourism. Geoheritage 2014, 6, 185–192. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, F.; Li, X.; Chen, L. Geotourism, geoconservation, and geodiversity along the belt and road: A case study of Dunhuang UNESCO Global Geopark in China. Proc. Geol. Assoc. 2019, 130, 232–241. [Google Scholar] [CrossRef]
- Justice, S.C. UNESCO Global Geoparks, Geotourism and Communication of the Earth Sciences: A Case Study in the Chablais UNESCO Global Geopark, France. Geosciences 2018, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Nickolas, Z. The European Geoparks Network-Geological heritage protection and local development. Int. Union Geol. Sci. 2004, 27, 165–171. [Google Scholar]
- Alexandrowicz, Z. Geopark—Nature protection category aiding the promotion of geotourism (Polish perspectives). Geoturystyka 2006, 2, 3–12. [Google Scholar]
- Dong, H.; Song, Y.; Chen, T.; Zhao, J.; Yu, L. Geoconservation and geotourism in Luochuan Loess National Geopark, China. Quat. Int. 2014, 334–335, 40–51. [Google Scholar] [CrossRef]
- Silva, E.; Sá, A.A. Educational challenges in the Portuguese UNESCO Global Geoparks: Contributing for the implementation of the SDG 4. Int. J. Geoherit. Parks 2018, 6, 95–106. [Google Scholar] [CrossRef]
- Pralong, J. Targed groups and geodidactic tools: To need to adapt tourist offer and demand. Mem. Descr. Carta Geol. D’it 2009, 87, 145–152. [Google Scholar]
- Serrano, E.; González Trueba, J.J. Environmental education and landscape leisure. Geotourist map and geomorphosites in the Picos de Europa National Park. GeoJournal Tour. Geosites 2011, 8, 295–308. [Google Scholar]
- Zouros, N.C. Lesvos Petrified Forest Geopark, Greece: Geoconservation, Geotourism, and Local Development. Georg. Wright Forum 2010, 27, 19–28. [Google Scholar]
- Albani, R.A.; Mansur, K.L.; dos Santos, W.F.S. New Approach on the Quantitative Assessment of Geotouristic Potential: A Case Study in the Northern Area of the Rio De Janeiro Cliffs and Lagoons Geopark Project. Geoheritage 2022, 14, 72. [Google Scholar] [CrossRef]
- Rodrigues, J.; Neto de Carvalho, C.; Ramos, M.; Ramos, R.; Vinagre, A.; Vinagre, H. Geoproducts–Innovative development strategies in UNESCO Geoparks: Concept, implementation methodology, and case studies from Naturtejo Global Geopark, Portugal. Int. J. Geoheritage Parks 2021, 9, 108–128. [Google Scholar] [CrossRef]
- Hong Kong UNESCO Global Geopark. GeoExperience. Available online: https://www.geopark.gov.hk/en_s4b.htm (accessed on 8 April 2022).
- Hose, T.A.; Vasiljević, D.A. Defining the Nature and Purpose of Modern Geotourism with Particular Reference to the United Kingdom and South-East Europe. Geoheritage 2012, 4, 25–43. [Google Scholar] [CrossRef]
- Koh, Y.-K.; Oh, K.-H.; Youn, S.-T.; Kim, H.-G. Geodiversity and geotourism utilization of islands: Gwanmae Island of South Korea. J. Mar. Isl. Cult. 2014, 3, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Jayakumar, R. Economic impact of UNESCO Global Geoparks on local communities: Comparative analysis of three UNESCO Global Geoparks in Asia. Int. J. Geoherit. Parks 2021, 9, 189–198. [Google Scholar] [CrossRef]
- Chen, J.; Cui, F.; Balezentis, T.; Streimikiene, D.; Jin, H. What drives international tourism development in the Belt and Road Initiative? J. Destin. Mark. Manag. 2021, 19, 100544. [Google Scholar] [CrossRef]
- Huang, C.; Qin, Y.; Du, X.; He, J.; Fan, X. Ecosystem Health and Environmental Geography in the Belt and Road Regions. Int. J. Environ. Res. Public Health 2022, 19, 5843. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, L.; Yan, J.; Wang, X.; Wang, T. Spatial–Temporal Characteristics and Influencing Factors of Coupled Coordination between Urbanization and Eco-Environment: A Case Study of 13 Urban Agglomerations in China. Sustainability 2020, 12, 8821. [Google Scholar] [CrossRef]
- Daly, H.E.; Cobb, C.W. For the Common Good: Redirecting the Economy toward Community, the Environment and a Sustainable Future; Beacon Press: Boston, MA, USA, 2017; Volume 2, pp. 346–347. [Google Scholar]
- Ruamsuke, K.; Dhakal, S.; Marpaung, C. Energy and economic impacts of the global climate change policy on Southeast Asian countries: A general equilibrium analysis. Energy 2015, 81, 446–461. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Nber Work. Pap. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, M.; Kašćelan, L.; Despotović, A.; Kašćelan, V. The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies. Sustainability 2015, 7, 16290–16310. [Google Scholar] [CrossRef] [Green Version]
- Bi, A.Z.H. Research of coupling of eco-economic systems of soil erosion regions based on the RSR model—A case study of Zhuxi River Basin. Chin. J. Eco-Agric. 2013, 21, 1023–1030. [Google Scholar] [CrossRef]
- Wang, F.; Lu, Y.; Li, J.; Ni, J. Evaluating Environmentally Sustainable Development Based on the PSR Framework and Variable Weigh Analytic Hierarchy Process. Int. J. Environ. Res. Public Health 2021, 18, 2836. [Google Scholar] [CrossRef]
- Yang, S.H. Research on the prediction and regulation of coordinated development of urban environment and economy in Guangzhou. Sci. Geogr. Sin. 1994, 14, 8. [Google Scholar]
- Chen, Q.; Bi, Y.; Li, J. Spatial Disparity and Influencing Factors of Coupling Coordination Development of Economy–Environment–Tourism–Traffic: A Case Study in the Middle Reaches of Yangtze River Urban Agglomerations. Int. J. Environ. Res. Public Health 2021, 18, 7947. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Yan, H. System-Dynamics Modeling for Exploring the Impact of Industrial-Structure Adjustment on the Water Quality of the River Network in the Yangtze Delta Area. Sustainability 2021, 13, 7696. [Google Scholar] [CrossRef]
- Wang, Y.H.; Jing-Yi, L.I. Coupling coordination evaluation method between eco-environment quality and economic development level in contiguous special poverty-stricken areas of China. Chin. J. Appl. Ecol. 2015, 26, 1519–1530. [Google Scholar]
- Ji, J.; Tang, Z.; Zhang, W.; Liu, W.; Jin, B.; Xi, X.; Wang, F.; Zhang, R.; Guo, B.; Xu, Z.; et al. Spatiotemporal and Multiscale Analysis of the Coupling Coordination Degree between Economic Development Equality and Eco-Environmental Quality in China from 2001 to 2020. Remote Sens. 2022, 14, 737. [Google Scholar] [CrossRef]
- Chang, B.; Chen, L. Land Economic Efficiency and Improvement of Environmental Pollution in the Process of Sustainable Urbanization: Case of Eastern China. Land 2021, 10, 845. [Google Scholar] [CrossRef]
- Alotaibi, A.A.; Alajlan, N. Using Quantile Regression to Analyze the Relationship between Socioeconomic Indicators and Carbon Dioxide Emissions in G20 Countries. Sustainability 2021, 13, 7011. [Google Scholar] [CrossRef]
- Shao, Z.; Ding, L.; Li, D.; Altan, O.; Huq, M.E.; Li, C. Exploring the Relationship between Urbanization and Ecological Environment Using Remote Sensing Images and Statistical Data: A Case Study in the Yangtze River Delta, China. Sustainability 2020, 12, 5620. [Google Scholar] [CrossRef]
- Guo, X.Y.; Mu, X.Q.; Ding, Z.S.; Ming, Q.Z.; Lu, B. Coordination Effect and Dynamic Relationship of Urban Ecological Environment and Tourism Economy: A Case Study of Qujing. Econ. Geograhpy 2020, 40, 231–240. [Google Scholar] [CrossRef]
- Fang, C.L. Theoretical foundation and patterns of coordinated development of the Beijing-Tianjin-Hebei Urban Agglomeration. Prog. Geogr. 2017, 36, 15–24. [Google Scholar]
- Zhang, R.; Dong, S.; Li, Z. The economic and environmental effects of the Beijing-Tianjin-Hebei Collaborative Development Strategy—Taking Hebei Province as an example. Environ. Sci. Pollut. Res. 2020, 27, 35692–35702. [Google Scholar] [CrossRef]
- Qiu-Feng, L.I.; Dang, Y.G.; Qian, W.Y. Study on Measurement of Level of Economic–Environmental System’s Coordination Development in Yixing City. Energy Procedia 2011, 5, 1937–1943. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Zhou, L.; Peng, H.; Zhang, M.; Yuan, X.; Du, C. Construction and application of the ecological benefit assessment model for the follow-up development of the Three Gorges Reservoir Area in Chongqing, China. GeoJournal 2019, 84, 917–938. [Google Scholar] [CrossRef]
- Petrea, S.M.; Zamfir, C.; Simionov, I.A.; Mogodan, A.; Nuţă, F.M.; Rahoveanu, A.T.; Nancu, D.; Cristea, D.S.; Buhociu, F.M. A Forecasting and Prediction Methodology for Improving the Blue Economy Resilience to Climate Change in the Romanian Lower Danube Euroregion. Sustainability 2021, 13, 11563. [Google Scholar] [CrossRef]
- Wan, J.; Li, Y.; Ma, C.; Jiang, T.; Su, Y.; Zhang, L.; Song, X.; Sun, H.; Wang, Z.; Zhao, Y.; et al. Measurement of Coupling Coordination Degree and Spatio-Temporal Characteristics of the Social Economy and Ecological Environment in the Chengdu–Chongqing Urban Agglomeration under High-Quality Development. Int. J. Environ. Res. Public Health 2021, 18, 11629. [Google Scholar] [CrossRef]
- Wu, Y.M.; Zhang, Y. Analyzing Coupled Regional Economic Growth and Environmental Conservation in China. Resour. Sci. 2008, 30, 25–30. [Google Scholar]
- Qin, X.; Li, X. Evaluate on the Decoupling of Tourism Economic Development and Ecological-Environmental Stress in China. Sustainability 2021, 13, 2149. [Google Scholar] [CrossRef]
- Song, M.; Hu, C. A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China. Sustainability 2018, 10, 4671. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Lei, D.; Weituo, Z.; Yalin, H.; Shenggao, C.; Chao, L. Research on the Coupling Coordination Relationship between Urbanization and the Air Environment: A Case Study of the Area of Wuhan. Atmosphere 2015, 6, 1539–1558. [Google Scholar]
- Deng, M.; Chen, J.; Tao, F.; Zhu, J.; Wang, M. On the Coupling and Coordination Development between Environment and Economy: A Case Study in the Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2022, 19, 586. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Song, J.; Wang, X.E.; Yang, W. The Spatial and Temporal Research on the Coupling and Coordinated Relationship between Social Economy and Energy Environment in the Belt and Road Initiatives. Sustainability 2019, 11, 407. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Suk, S. Coupling and Coordinating Relationship between Tourism Economy and Ecological Environment—A Case Study of Nagasaki Prefecture, Japan. Int. J. Environ. Res. Public Health 2021, 18, 12818. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, F.; Wu, F.; Chen, Y.; Qin, K. Coupling Coordination Degree Spatial Analysis and Driving Factor Between Socio-economic and Eco-environment in Northern China. Ecol. Indic. 2022, 135, 108555. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Q.; Zhou, M.; Xia, Q.; Quan, M. Analysis on the Mechanism and Influencing Factors of the Coordinated Development of Economy and Environment in China’s Resource-Based Cities. Sustainability 2022, 14, 2929. [Google Scholar] [CrossRef]
- Cheng, Q.; Luo, Z.; Xiang, L. Spatiotemporal Differentiation of Coupling and Coordination Relationship of the Tea Industry–Tourism–Ecological Environment System in Fujian Province, China. Sustainability 2021, 13, 10628. [Google Scholar] [CrossRef]
- Zhang, P.; Fei, S.; He, L.; Qiu, S. Coordination Degree of Urban Population, Economy, Space, and Environment in Shenyang Since 1990. China Popul. Resour. Environ. 2008, 18, 115–119. [Google Scholar]
- Zhang, W.; Zhang, X.; Zhang, M.; Li, W. How to Coordinate Economic, Logistics and Ecological Environment? Evidences from 30 Provinces and Cities in China. Sustainability 2020, 12, 1058. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Chen, M.; Chen, M.-Y. Coupling and Coordination Development of Australian Energy, Economy, and Ecological Environment Systems from 2007 to 2016. Sustainability 2019, 11, 6568. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Weng, G.; Li, C.; Li, J. Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation. Int. J. Environ. Res. Public Health 2021, 18, 1601. [Google Scholar] [CrossRef]
- Wang, L.; Tian, M.; Sun, H. Major Regional Benefits of Geological Tourism of Chinese Mountain-type Global Geoparks. Mt. Res. 2015, 33, 733–741. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Alvarado, N.; Morante-Carballo, F.; Maldonado, A.; Caldevilla, P.; Briones-Bitar, J.; Berrezueta, E. Geosites and Georesources to Foster Geotourism in Communities: Case Study of the Santa Elena Peninsula Geopark Project in Ecuador. Sustainability 2020, 12, 4484. [Google Scholar] [CrossRef]
- Golfinopoulos, V.; Papadopoulou, P.; Koumoutsou, E.; Zouros, N.; Fassoulas, C.; Zelilidis, A.; Iliopoulos, G. Quantitative Assessment of the Geosites of Chelmos-Vouraikos UNESCO Global Geopark (Greece). Geosciences 2022, 12, 63. [Google Scholar] [CrossRef]
- Dollma, M. Geotourism potential of Thethi National Park (Albania). Int. J. Geoheritage Parks 2019, 7, 85–90. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Apolo-Masache, B.; Jaya-Montalvo, M. Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences 2020, 10, 379. [Google Scholar] [CrossRef]
- Larwood, J.G.; Badman, T.; Mckeever, P.J. The progress and future of geoconservation at a global level. Proc. Geol. Assoc. 2013, 124, 720–730. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: Developing the paradigm. Proc. Geol. Assoc. 2008, 119, 287–298. [Google Scholar] [CrossRef]
- Tsakiri, M.; Koumoutsou, E.; Kokkoris, I.P.; Trigas, P.; Iliadou, E.; Tzanoudakis, D.; Dimopoulos, P.; Iatrou, G. National Park and UNESCO Global Geopark of Chelmos-Vouraikos (Greece): Floristic Diversity, Ecosystem Services and Management Implications. Land 2022, 11, 33. [Google Scholar] [CrossRef]
- Frey, M.-L. Geotourism—Examining Tools for Sustainable Development. Geosciences 2021, 11, 30. [Google Scholar] [CrossRef]
- Megerle, H.E. One Billion Years of Earth History: Challenges of Valorizing the Outstanding Geodiversity of Southwest Germany for Sustainable Geotourism. Sustainability 2022, 14, 559. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Dowling, R.K. Geotourism’s Global Growth. Geoheritage 2011, 3, 1–13. [Google Scholar] [CrossRef]
- Yi, P.; Fang, S.M. Coupling Coordination Between the Socio-Economic Benefits and Eco-Environmental Benefits of the Songshan Global Geopark. Resour. Sci. 2014, 36, 206–216. [Google Scholar]
- Yi, P.; Fang, S.M.; Ma, C.Y. Decoupling Evaluation between Tourism Economic Growth and Eco-environmental Pressure of Songshan Global Geopark. J. Nat. Resour. 2014, 29, 1282–1296. [Google Scholar]
- Spellerberg, I.F.; Fedor, P. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Sarker, M.N.I.; Lv, Y. Coupling Coordination of the Regional Economy, Tourism Industry, and the Ecological Environment: Evidence from Western China. Sustainability 2022, 14, 1654. [Google Scholar] [CrossRef]
- Liu, S.; Xie, X.; Zhang, X.; Zhou, C.; Cai, Y. Coordinated Development between Assistance to Tibet and Tourism Development: Spatial Patterns and Influencing Factors. Discret. Dyn. Nat. Soc. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Liu, J.; Gu, K. Dynamic Coupling of Ecological Supporting Capability and Socioeconomic Development of West Jilin Province. Chin. J. Appl. Ecol. 2009, 20, 170–176. [Google Scholar]
- Zhao, Y.; Hou, P.; Jiang, J.; Zhai, J.; Chen, Y.; Wang, Y.; Bai, J.; Zhang, B.; Xu, H. Coordination Study on Ecological and Economic Coupling of the Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 10664. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wang, Y.; Li, J. How to achieve the ecological sustainability goal of UNESCO Global Geoparks? A multi-scenario simulation and ecological assessment approach using Dabieshan UGGp, China as a case study. J. Clean. Prod. 2021, 329, 129779. [Google Scholar] [CrossRef]
- Ramsay, T. Fforest Fawr Geopark—a UNESCO Global Geopark distinguished by its geological, industrial and cultural heritage. Proc. Geol. Assoc. 2017, 128, 500–509. [Google Scholar] [CrossRef]
- Ansori, C.; Setiawan, N.I.; Warmada, I.W.; Yogaswara, H. Identification of geodiversity and evaluation of geosites to determine geopark themes of the Karangsambung-Karangbolong National Geopark, Kebumen, Indonesia. Int. J. Geoheritage Parks 2022, 10, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Liu, X.; Chang, Y.; Wang, H.; Yang, J.; Yang, X.; Wei, Y. The multi-dimensional perspective of ecological security evaluation and drive mechanism for Baishuijiang National Nature Reserve, China. Ecol. Indic. 2021, 132, 108295. [Google Scholar] [CrossRef]
- Ye, Y.; Qiu, H.J.U.F. Environmental and social benefits, and their coupling coordination in urban wetland parks. Urban For. Urban Green. 2021, 60, 127043. [Google Scholar] [CrossRef]
- Guan, W.; Liu, F.-Y. The Analysis of Spatiotemporal Evolution of Economic and Environmental Coordination Development Degree in Liaoning Coastal Econmic Belt. Geogr. Res. 2012, 31, 2044–2054. [Google Scholar]
- Shi, T.; Yang, S.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean. Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Zi, T. An integrated approach to evaluating the coupling coordination between tourism and the environment. Tour. Manag. 2015, 46, 11–19. [Google Scholar] [CrossRef]
Subsystem | First-Level Indicator | Second-Level Indicator | Type |
---|---|---|---|
SEB system (A) | Tourism development A1 | Total tourism revenue A11 | + |
Number of residents participating in tourism development A12 | + | ||
Local economic development A2 | Engel coefficient of residents A21 | − | |
Investment in planning and construction projects A22 | + | ||
Per capita disposable income A23 | + | ||
Transformation of scientific research achievements A24 | + | ||
Popularizing geoscience knowledge A3 | Number of popularization activities of geoscience knowledge A31 | + | |
EEB system (B) | Environmental protection B1 | Water cleanliness B11 | + |
Degree of air cleanliness B12 | + | ||
Noise level B13 | − | ||
Per capita water resources B14 | + | ||
Ecological protection B2 | Species richness B21 | + | |
Forest coverage rate B22 | + | ||
Landscape protection B3 | Landscape fragmentation B31 | − |
Year | A1 (0.0316) | A2 (0.0434) | A3 (0.0122) | ||||
---|---|---|---|---|---|---|---|
A11 | A12 | A21 | A22 | A23 | A24 | ||
2005 | 0.0229 | 0.0000 | 0.0362 | 0.0323 | 0.0031 | 0.0000 | 0.0000 |
2006 | 0.0163 | 0.0000 | 0.0371 | 0.0203 | 0.0029 | 0.0060 | 0.0000 |
2007 | 0.0248 | 0.0000 | 0.0375 | 0.0236 | 0.0033 | 0.0109 | 0.0000 |
2008 | 0.0202 | 0.0000 | 0.0283 | 0.0184 | 0.0035 | 0.0308 | 0.0003 |
2009 | 0.0261 | 0.0031 | 0.0317 | 0.0205 | 0.0031 | 0.1327 | 0.0005 |
2010 | 0.0183 | 0.0000 | 0.0238 | 0.0176 | 0.0041 | 0.0217 | 0.0004 |
2011 | 0.0287 | 0.0104 | 0.0204 | 0.0146 | 0.0051 | 0.1149 | 0.0026 |
2012 | 0.0161 | 0.1275 | 0.0316 | 0.0155 | 0.0059 | 0.1325 | 0.0135 |
2013 | 0.0218 | 0.0036 | 0.0274 | 0.0304 | 0.0051 | 0.1475 | 0.0108 |
2014 | 0.0676 | 0.0310 | 0.0251 | 0.0185 | 0.0043 | 0.1155 | 0.0232 |
2015 | 0.0318 | 0.0290 | 0.0284 | 0.0244 | 0.0052 | 0.2283 | 0.0183 |
2016 | 0.0612 | 0.0349 | 0.0241 | 0.0296 | 0.0073 | 0.2010 | 0.0308 |
2017 | 0.0915 | 0.0361 | 0.0221 | 0.0282 | 0.0064 | 0.2134 | 0.0347 |
2018 | 0.1242 | 0.0384 | 0.0236 | 0.1104 | 0.0069 | 0.2078 | 0.0358 |
Ej | 0.2937 | 0.1614 | 0.2042 | 0.2078 | 0.0340 | 0.8033 | 0.0878 |
wAj | 0.1312 | 0.1558 | 0.1478 | 0.1472 | 0.1795 | 0.0365 | 0.1695 |
Year | B1 (0.0450) | B2 (0.0057) | B3 (0.0273) | ||||
---|---|---|---|---|---|---|---|
B11 | B12 | B13 | B14 | B21 | B22 | ||
2005 | 0.0608 | 0.0039 | 0.0302 | 0.0202 | 0.0042 | 0.0073 | 0.0260 |
2006 | 0.0614 | 0.0042 | 0.0308 | 0.0192 | 0.0042 | 0.0080 | 0.0262 |
2007 | 0.0687 | 0.0055 | 0.0316 | 0.0247 | 0.0039 | 0.0076 | 0.0285 |
2008 | 0.0684 | 0.0054 | 0.0296 | 0.0166 | 0.0044 | 0.0070 | 0.0281 |
2009 | 0.0501 | 0.0068 | 0.0304 | 0.0239 | 0.0043 | 0.0070 | 0.0270 |
2010 | 0.0473 | 0.0073 | 0.0314 | 0.0263 | 0.0037 | 0.0069 | 0.0278 |
2011 | 0.0515 | 0.0113 | 0.0321 | 0.0460 | 0.0037 | 0.0067 | 0.0261 |
2012 | 0.0460 | 0.0253 | 0.0308 | 0.0348 | 0.0038 | 0.0070 | 0.0296 |
2013 | 0.0629 | 0.0476 | 0.3029 | 0.0616 | 0.0043 | 0.0068 | 0.0280 |
2014 | 0.0490 | 0.0236 | 0.0285 | 0.1105 | 0.0042 | 0.0068 | 0.0266 |
2015 | 0.0478 | 0.0192 | 0.0307 | 0.1134 | 0.0039 | 0.0070 | 0.0278 |
2016 | 0.0419 | 0.0201 | 0.0314 | 0.0701 | 0.0044 | 0.0070 | 0.0262 |
2017 | 0.0483 | 0.0337 | 0.0297 | 0.1362 | 0.0044 | 0.0074 | 0.0273 |
2018 | 0.0507 | 0.0413 | 0.0310 | 0.1078 | 0.0043 | 0.0081 | 0.0264 |
Ej | 0.3880 | 0.1312 | 0.3603 | 0.4170 | 0.0297 | 0.0517 | 0.1961 |
wBj | 0.1137 | 0.1614 | 0.1188 | 0.1083 | 0.1802 | 0.1762 | 0.1493 |
Category | CCD | Subclass | Type | Characteristic |
---|---|---|---|---|
Disorder | 0.00–0.09 | Extreme disorder | F(x) > F(y) | Extreme disorder with EEBs lagging |
F(x) = F(y) | Extreme disorder with SEBs and EEBs synchronized | |||
F(x) < F(y) | Extreme disorder with SEBs lagging | |||
0.1–0.19 | Serious disorder | F(x) > F(y) | Serious disorder with EEBs lagging | |
F(x) = F(y) | Serious disorder with SEBs and EEBs synchronized | |||
F(x) < F(y) | Serious disorder with SEBs lagging | |||
0.2–0.29 | Moderate disorder | F(x) > F(y) | Moderate disorder with EEBs lagging | |
F(x) = F(y) | Moderate disorder with SEBs and EEBs synchronized | |||
F(x) < F(y) | Moderate disorder with SEBs lagging | |||
0.3–0.39 | Mild disorder | F(x) > F(y) | Mild disorder with EEBs lagging | |
F(x) = F(y) | Mild disorder with SEBs and EEBs synchronized | |||
F(x) < F(y) | Mild disorder with SEBs lagging | |||
0.4–0.49 | Near disorder | F(x) > F(y) | Near disorder with EEBs lagging | |
F(x) = F(y) | Near disorder with SEBs and EEBs synchronized | |||
F(x) < F(y) | Near disorder with SEBs lagging | |||
Coordination | 0.5–0.59 | Bare coordination | F(x) > F(y) | Bare coordination with EEBs lagging |
F(x) = F(y) | Bare coordination with SEBs and EEBs synchronized | |||
F(x) < F(y) | Bare coordination with SEBs lagging | |||
0.6–0.69 | Primary coordination | F(x) > F(y) | Primary coordination with EEBs lagging | |
F(x) = F(y) | Primary coordination with SEBs and EEBs synchronized | |||
F(x) < F(y) | Primary coordination with SEBs lagging | |||
0.7–0.79 | Intermediate coordination | F(x) > F(y) | Intermediate coordination with EEBs lagging | |
F(x) = F(y) | Intermediate coordination with SEBs and EEBs synchronized | |||
F(x) < F(y) | Intermediate coordination with SEBs lagging | |||
0.8–0.89 | Good coordination | F(x) > F(y) | Good coordination with EEBs lagging | |
F(x) = F(y) | Good coordination with SEBs and EEBs synchronized | |||
F(x) < F(y) | Good coordination with SEBs lagging | |||
0.9–1.00 | High-quality coordination | F(x) > F(y) | High-quality coordination with EEBs lagging | |
F(x) = F(y) | High-quality coordination with SEBs and EEBs synchronized | |||
F(x) < F(y) | High-quality coordination with SEBs lagging |
Year | F(x) | F(y) | C | T | D | Type | Characteristic |
---|---|---|---|---|---|---|---|
2005 | 0.1989 | 0.3081 | 0.5739 | 0.2535 | 0.3814 | F(x) < F(y) | Mild disorder with SEBs lagging |
2006 | 0.2350 | 0.3182 | 0.5790 | 0.2766 | 0.4002 | F(x) < F(y) | Near disorder with SEBs lagging |
2007 | 0.2912 | 0.3036 | 0.5107 | 0.2974 | 0.3897 | F(x) < F(y) | Mild disorder with SEBs lagging |
2008 | 0.4590 | 0.3240 | 0.5504 | 0.3915 | 0.4642 | F(x) > F(y) | Near disorder with EEBs lagging |
2009 | 0.4170 | 0.3023 | 0.5696 | 0.3596 | 0.4526 | F(x) > F(y) | Near disorder with EEBs lagging |
2010 | 0.4906 | 0.2438 | 0.5151 | 0.3672 | 0.4349 | F(x) > F(y) | Near disorder with EEBs lagging |
2011 | 0.5317 | 0.2453 | 0.5061 | 0.3885 | 0.4434 | F(x) > F(y) | Near disorder with EEBs lagging |
2012 | 0.5698 | 0.2119 | 0.4868 | 0.3909 | 0.4362 | F(x) > F(y) | Near disorder with EEBs lagging |
2013 | 0.5406 | 0.2618 | 0.5323 | 0.4012 | 0.4621 | F(x) > F(y) | Near disorder with EEBs lagging |
2014 | 0.5460 | 0.3191 | 0.5722 | 0.4326 | 0.4975 | F(x) > F(y) | Near disorder with EEBs lagging |
2015 | 0.6074 | 0.3045 | 0.5474 | 0.4559 | 0.4996 | F(x) > F(y) | Near disorder with EEBs lagging |
2016 | 0.6134 | 0.3691 | 0.5874 | 0.4913 | 0.5372 | F(x) > F(y) | Bare coordination with EEBs lagging |
2017 | 0.6439 | 0.3210 | 0.5986 | 0.4824 | 0.5374 | F(x) > F(y) | Bare coordination with EEBs lagging |
2018 | 0.6645 | 0.3219 | 0.5378 | 0.4932 | 0.5150 | F(x) > F(y) | Bare coordination with EEBs lagging |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Pang, X.; Zhou, C.; He, X. Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China. Int. J. Environ. Res. Public Health 2022, 19, 8498. https://doi.org/10.3390/ijerph19148498
Zhu Y, Pang X, Zhou C, He X. Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China. International Journal of Environmental Research and Public Health. 2022; 19(14):8498. https://doi.org/10.3390/ijerph19148498
Chicago/Turabian StyleZhu, Yiting, Xueru Pang, Chunshan Zhou, and Xiong He. 2022. "Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China" International Journal of Environmental Research and Public Health 19, no. 14: 8498. https://doi.org/10.3390/ijerph19148498
APA StyleZhu, Y., Pang, X., Zhou, C., & He, X. (2022). Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China. International Journal of Environmental Research and Public Health, 19(14), 8498. https://doi.org/10.3390/ijerph19148498