Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Impact of Construction Waste
2.2. Recycling Practices of Construction Waste
2.3. Shanghai City, China
3. Research Methods
3.1. Grey Model (1,1)
3.2. LCA
4. Results and Analysis
4.1. Results of Construction Waste Generation
4.1.1. Data Collection and Calculation
4.1.2. Model Verification and Result Analysis
4.2. Results of the Carbon Emission of Construction Waste Recycling
4.2.1. Data Collection and Calculation
- Transportation
- Carbon emissions of key activities
4.2.2. Result Analysis
- Carbon emission of each waste composition (1 t)
- Carbon emission of recycling 1 t of construction waste in Shanghai
- Sensitivity analysis
- Scenario analysis: Carbon emission of construction waste recycling in Shanghai from 2022 to 2031
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Z.; Lu, W.; Webster, C.J. Quantifying the embodied carbon saving potential of recycling construction and demolition waste in the Greater Bay Area, China: Status quo and future scenarios. Sci. Total Environ. 2021, 792, 148427. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, J.; Wu, P.; Wang, J.; He, Q.; Wang, X. Estimating the environmental costs and benefits of demolition waste using life cycle assessment and willingness-to-pay: A case study in Shenzhen. J. Clean. Prod. 2018, 172, 14–26. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, R.; Chuai, X.; Xiao, L.; Cao, L.; Zhang, Z. China’s pathway to a low carbon economy. Carbon Balance Manag. 2019, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Lou, J.; Webster, C.; Xue, F.; Bao, Z.; Chi, B. Estimating construction waste generation in the Greater Bay Area, China using machine learning. Waste Manag. 2021, 134, 78–88. [Google Scholar] [CrossRef]
- Xiao, J.; Li, W.; Fan, Y.; Huang, X. An overview of study on recycled aggregate concrete in China (1996–2011). Constr. Build. Mater. 2012, 31, 364–383. [Google Scholar] [CrossRef]
- Lu, W.; Webster, C.; Peng, Y.; Chen, X.; Zhang, X. Estimating and calibrating the amount of building-related construction and demolition waste in urban China. Int. J. Constr. Manag. 2017, 17, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.; Tam, V.W.Y. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. J. Clean. Prod. 2020, 263, 121265. [Google Scholar] [CrossRef]
- Ye, G.; Yuan, H.; Shen, L.; Wang, H. Simulating effects of management measures on the improvement of the environmental performance of construction waste management. Resour. Conserv. Recycl. 2012, 62, 56–63. [Google Scholar] [CrossRef]
- Ding, T.; Xiao, J. Estimation of building-related construction and demolition waste in Shanghai. Waste Manag. 2014, 34, 2327–2334. [Google Scholar] [CrossRef]
- Liu, K.; Leng, J.W. Quantitative research on embodied carbon emissions in the design stage: A case study from an educational building in China. J. Asian Archit. Build. Eng. 2022, 21, 1182–1192. [Google Scholar] [CrossRef]
- Lajunen, A.; Lipman, T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy 2016, 106, 329–342. [Google Scholar] [CrossRef]
- Lu, W.; Yuan, H.; Li, J.; Hao, J.; Mi, X.; Ding, Z. An empirical investigation of construction and demolition waste generate rates in Shenzhen city, South China. Waste Manag. 2011, 31, 680–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, R.; Li, B.; Zhou, T.; Wanatowski, D.; Piroozfar, P. An empirical study of perceptions towards construction and demolition waste recycling and reuse in China. Resour. Conserv. Recycl. 2017, 126, 86–98. [Google Scholar] [CrossRef]
- Wu, H.; Duan, H.; Zheng, L.; Wang, J.; Niu, Y.; Zhang, G. Demolition waste generation and recycling potentials in a rapidly developing flagship megacity of South China: Prospective scenarios and implications. Constr. Build. Mater. 2016, 113, 1007–1016. [Google Scholar] [CrossRef]
- Li, Z. Current Situation and Development Prospect of Resource Utilization of Construction and Demolition Debris in Shanghai. Environ. Sanit. Eng. 2020, 28, 49–54. (In Chinese) [Google Scholar]
- Ma, M.; Tam, V.W.Y.; Le, K.N.; Li, W. Challenges in current construction and demolition waste recycling: A China study. Waste Manag. 2020, 118, 610–625. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Duan, H.; Wang, J.; Wang, T.; Wang, X. Quantification of carbon emission of construction waste by using streamlined LCA: A case study of Shenzhen, China. J. Mater. Cycles Waste Manag. 2015, 17, 637–645. [Google Scholar] [CrossRef]
- Su, S.; Li, S.; Ju, J.; Wang, Q.; Xu, Z. A building information modeling-based tool for estimating building demolition waste and evaluating its environmental impacts. Waste Manag. 2021, 134, 159–169. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Wang, X. An environmental assessment model of construction and demolition waste based on system dynamics: A case study in Guangzhou. Environ. Sci. Pollut. Res. 2020, 27, 37237–37259. [Google Scholar] [CrossRef]
- Xing, W.H.; Charles, H. Decontamination of granular wastes by mining separation techniques. J. Clean. Prod. 2006, 14, 748–753. [Google Scholar] [CrossRef]
- Li, X. Recycling and reuse of waste concrete in China: Part, I. Material behaviour of recycled aggregate concrete. Resour. Conserv. Recycl. 2008, 53, 36–44. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M. A review on the viable technology for construction waste recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Gu, L. Investigating the Environmental Impact of China’s Construction Industry by Life Cycle Assessment; Tsinghua University: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Zheng, L.; Ge, Z.; Yao, Z.; Gao, Z. Mechanical properties of mortar with recycled clay-brick-powder. In Proceedings of the 11th International Conference of Chinese Transportation Professionals (ICCTP), towards Sustainable Transportation Systems, Nanjing, China, 14–17 August 2011. [Google Scholar]
- Kartam, N.; Al-Mutairi, N.; Al-Ghusain, I.; Al-Humoud, J. Environmental management of construction and demolition waste in Kuwait. Waste Manag. 2004, 29, 1049–1059. [Google Scholar] [CrossRef]
- Burchart-Korol, D. Life cycle assessment of steel production in Poland: A case study. J. Clean. Prod. 2013, 54, 235–243. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M.; Le, K.N. Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resour. Conserv. Recycl. 2007, 50, 82–101. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, J.; Zhao, X.; Yan, P.; Ji, W. Effect of brick waste content on mechanical properties of mixed recycled concrete. Constr. Build. Mater. 2021, 292, 123320. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Liu, F.; Zhang, Y. Development of a hybrid model to predict construction and demolition waste: China as a case study. Waste Manag. 2017, 59, 350–361. [Google Scholar] [CrossRef]
- Ding, Z.; Shi, M.; Lu, C.; Wu, Z.; Chong, D.; Gong, W. Predicting Renovation Waste Generation Based on Grey System Theory: A Case Study of Shenzhen. Sustainability 2019, 11, 4326. [Google Scholar] [CrossRef] [Green Version]
- Tang, L. Planning and Development Strategy of Solid Waste Resource Utilization in Shanghai. Oper. Manag. 2018, 2, 117–120. (In Chinese) [Google Scholar]
- Deng, J. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Tseng, F.M.; Yu, H.C.; Tzeng, G.H. Applied Hybrid Grey Model to Forecast Seasonal Time Series. Technol. Forecast. Soc. Chang. 2001, 67, 291–302. [Google Scholar] [CrossRef]
- Yang, J. Life Cycle Assessment of Products: Methods and Applications; China Meteorological Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Ecoinvent. The Ecoinvent Database. 2016. Available online: http://www.ecoinvent.org/database/database.html (accessed on 6 September 2016).
- Wang, D. Environmental Impacts of Disposing Wasted Clay Brick Based on the Life-Cycle Assessment; Tsinghua University: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Johnson, J.; Reck, B.K.; Wang, T.; Graedel, T.E. The energy benefit of stainless steel recycling. Energy Policy 2008, 13, 181–192. [Google Scholar] [CrossRef]
- Mercante, I.T.; Bovea, M.D.; Ibanez-Fores, V.; Arena, A.P. Life cycle assessment of construction and demolition waste management systems: A Spanish case study. Int. J. Life Cycle Assess 2012, 17, 232–241. [Google Scholar] [CrossRef]
- Sandulescu, E. The contribution of waste management to the reduction of greenhouse gas emissions with applications in the city of Bucharest. Waste Manag. Res. 2004, 22, 413–426. [Google Scholar] [CrossRef]
- Pennington, D.W.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, G. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef]
- Islam, R.; Nazifa, T.H.; Yuniarto, A.; Uddin, S.; Salmiat, S.; Shahid, S. An empirical study of construction and demolition waste generation and implication of recycling. Waste Manag. 2019, 95, 10–21. [Google Scholar] [CrossRef]
- Taffe, W.Z.; Abegaz, K.A. Embodied energy and CO2 emissions of widely used building materials: The Ethiopian context. Buildings 2019, 9, 136. [Google Scholar] [CrossRef] [Green Version]
Construction Waste | Weight (kg) | Percentage | Recycling Rate | Reference |
---|---|---|---|---|
Concrete | 429 | 42.9% | 90% | Li [15] |
Brick or block | 383 | 38.3% | 50% | Tang [31] |
Wood | 112 | 11.2% | 50% | Tang [31] |
Steel | 65 | 6.5% | 50% | Tang [31] |
Mortar | 11 | 1.1% | 40% | Li [15] |
Total | 1000 | 100 | - | - |
Year | Construction Area/10,000 m2 | Construction Waste/10,000 t |
---|---|---|
2010 | 11,295.03 | 451.8012 |
2011 | 12,983.32 | 519.3328 |
2012 | 13,249.97 | 529.9988 |
2013 | 13,516.58 | 540.6632 |
2014 | 14,690.18 | 587.6072 |
2015 | 15,095.33 | 603.8132 |
2016 | 15,111.24 | 604.4496 |
2017 | 15,362.25 | 614.49 |
2018 | 14,672.37 | 586.8948 |
2019 | 14,802.97 | 592.1188 |
2020 | 15,001.66 | 600.0664 |
2021 | 15,210.68 | 608.4272 |
Year | Sequence B | ||||
---|---|---|---|---|---|
2010 | 451.8012 | 451.8012 | −711.4676 | 1 | 519.3328 |
2011 | 519.3328 | 971.134 | −1236.1334 | 1 | 529.9988 |
2012 | 529.9988 | 1501.1328 | −1771.4644 | 1 | 540.6632 |
2013 | 540.6632 | 2041.796 | −2335.5996 | 1 | 587.6072 |
2014 | 587.6072 | 2629.4032 | −2931.3098 | 1 | 603.8132 |
2015 | 603.8132 | 3233.2164 | −3535.4412 | 1 | 604.4496 |
2016 | 604.4496 | 3837.666 | −4144.911 | 1 | 614.49 |
2017 | 614.49 | 4452.156 | −4745.6034 | 1 | 586.8948 |
2018 | 586.8948 | 5039.0508 | −5335.1102 | 1 | 592.1188 |
2019 | 592.1188 | 5631.1696 | −5931.2028 | 1 | 600.0664 |
2020 | 600.0664 | 6231.236 | −6535.4496 | 1 | 608.4272 |
2021 | 608.4272 | 6839.6632 | −711.4676 | 1 | 519.3328 |
Downtown * | Jiading | Baoshan | Qingpu | Songjiang | Jinshan | Fengxian | Minhang | Pudong | Congming | |
---|---|---|---|---|---|---|---|---|---|---|
(km) | 24.5 | 28.2 | 6.1 | 23.7 | 35.1 | 43.8 | 15.5 | 30.9 | 54.8 | 24.5 |
18.78% | 4.55% | 4.29% | 4.63% | 9.26% | 3.69% | 4.29% | 14.75% | 30.36% | 5.40% | |
D (km) | 35.29 |
Activities | Carbon Emission (kg CO2−e) | References |
---|---|---|
Transportation | 0.228/kg-km | Ecoinvent [35] |
Concrete and mortar recycling | 0.017/kg | Ecoinvent [35] |
Brick recycling | 32.25/kg | Wang [36] |
Steel production | 2100/kg | Gu [23] |
Wood production | 39.95/kg | Wu, Duan [17] |
Wood recycling | 52.61/kg | Wu, Duan [17] |
Diesel production | 1462 mg/MJ | Yang [34] |
Electricity production | 317,000 mg/MJ | Yang [34] |
Waste Composition | Activities | Carbon Emission (kg CO2−e) | Quantity (t) | Carbon Emission of 1 t Construction Waste (kg CO2−e) |
---|---|---|---|---|
Concrete recycling | Transportation (1.1) | 8.05 | 0.429 | 3.62 |
Recycling activities (2.1–2.3) | 3.09 | |||
Recycling credits (2.4) | −2.71 | |||
Subtotal | 8.43 | |||
Brick recycling | Transportation (1.2) | 8.05 | 0.383 | 13.72 |
Recycling activities (3.1–3.3) | 27.90 | |||
Recycling credits (3.4) | −0.13 | |||
Subtotal | 35.82 | |||
Steel recycling | Transportation (1.3) | 11.42 | 0.065 | −117.72 |
Recycling activities (4.1) | 911.26 | |||
Recycling credits (4.2) | −2733.77 | |||
Subtotal | −1811.09 | |||
Mortar recycling | Transportation (1.4) | 8.05 | 0.011 | 0.12 |
Recycling activities (5.1) | 3.09 | |||
Subtotal | 11.14 | |||
Wood recycling | Transportation (1.5) | 11.42 | 0.112 | −0.14 |
Recycling activities (6.1) | 39.95 | |||
Recycling credits (6.2) | −52.61 | |||
Subtotal | −1.24 | |||
Total | −100.4 |
Sensitivity Factor | Waste Composition | Rate of Change (under −10%) | Rate of Change (under 10%) |
---|---|---|---|
Transportation distance | Carbon emission of concrete recycling | −9.55% | 9.55% |
Carbon emission of brick recycling | −2.25% | 2.25% | |
Carbon emission of wood recycling | 9.21% | −9.21% | |
Carbon emission of steel recycling | 0.06% | −0.06% | |
Carbon emission of mortar recycling | −7.23% | 7.23% | |
Recycling rate | Carbon emission of concrete recycling | −3.67% | 3.67% |
Carbon emission of brick recycling | −7.79% | 7.79% | |
Carbon emission of wood recycling | 3.22% | −3.22% | |
Carbon emission of steel recycling | 5.03% | −5.03% | |
Carbon emission of mortar recycling | −2.77% | 2.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, K.; Liu, D.; Yang, Y.; Wu, D. Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai. Int. J. Environ. Res. Public Health 2022, 19, 8507. https://doi.org/10.3390/ijerph19148507
Wang T, Li K, Liu D, Yang Y, Wu D. Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai. International Journal of Environmental Research and Public Health. 2022; 19(14):8507. https://doi.org/10.3390/ijerph19148507
Chicago/Turabian StyleWang, Ting, Kaiyi Li, Defu Liu, Yang Yang, and Dong Wu. 2022. "Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai" International Journal of Environmental Research and Public Health 19, no. 14: 8507. https://doi.org/10.3390/ijerph19148507
APA StyleWang, T., Li, K., Liu, D., Yang, Y., & Wu, D. (2022). Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai. International Journal of Environmental Research and Public Health, 19(14), 8507. https://doi.org/10.3390/ijerph19148507