Posttraumatic Stress Disorder Mediates the Association between Traumatic World Trade Center Dust Cloud Exposure and Ongoing Systemic Inflammation in Community Members
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. WTC Exposures and Medical Assessment
2.3. Markers of Systemic Inflammation
2.4. Mental Health Symptoms
2.5. Statistical Methods and Mediation Analyses
3. Results
3.1. Patient Characteristics
3.2. Characteristics Associated with PTSD Symptoms at Initial Visit
3.3. PTSD Symptoms (PCL Score) Mediates the Association between WDCTE and Systemic Inflammation (CRP Level)
3.4. Mediation Effects of PTSD Symptom Clusters in the Association between WDCTE and Systemic Inflammation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lioy, P.J.; Georgopoulos, P. The anatomy of the exposures that occurred around the World Trade Center site: 9/11 and beyond. Ann. N.Y. Acad. Sci. 2006, 1076, 54–79. [Google Scholar] [CrossRef] [PubMed]
- Lippmann, M.; Cohen, M.D.; Chen, L.C. Health effects of World Trade Center (WTC) Dust: An unprecedented disaster’s inadequate risk management. Crit. Rev. Toxicol. 2015, 45, 492–530. [Google Scholar] [CrossRef]
- Maslow, C.B.; Friedman, S.M.; Pillai, P.S.; Reibman, J.; Berger, K.I.; Goldring, R.; Stellman, S.D.; Farfel, M. Chronic and acute exposures to the world trade center disaster and lower respiratory symptoms: Area residents and workers. Am. J. Public Health 2012, 102, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Reibman, J.; Levy-Carrick, N.; Miles, T.; Flynn, K.; Hughes, C.; Crane, M.; Lucchini, R.G. Destruction of the World Trade Towers: Lessons Learned from an Environmental Health Disaster. Ann. Am. Thorac. Soc. 2016, 13, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, L.G.; Han, X.; Koshy, T.T.; Shao, Y.; Chu, D.B.; Kannan, K.; Trasande, L. Adolescents exposed to the World Trade Center collapse have elevated serum dioxin and furan concentrations more than 12 years later. Environ. Int. 2018, 111, 268–278. [Google Scholar] [CrossRef]
- Wolff, M.S.; Teitelbaum, S.L.; Lioy, P.J.; Santella, R.M.; Wang, R.Y.; Jones, R.L.; Caldwell, K.L.; Sjödin, A.; Turner, W.E.; Li, W.; et al. Exposures among pregnant women near the World Trade Center site on 11 September 2001. Environ. Health Perspect. 2005, 113, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Trasande, L.; Koshy, T.T.; Gilbert, J.; Burdine, L.K.; Attina, T.M.; Ghassabian, A.; Honda, M.; Marmor, M.; Chu, D.B.; Han, X.; et al. Serum perfluoroalkyl substances in children exposed to the world trade center disaster. Environ. Res. 2017, 154, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Koshy, T.T.; Attina, T.M.; Ghassabian, A.; Gilbert, J.; Burdine, L.K.; Marmor, M.; Honda, M.; Chu, D.B.; Han, X.; Shao, Y.; et al. Serum perfluoroalkyl substances and cardiometabolic consequences in adolescents exposed to the World Trade Center disaster and a matched comparison group. Environ. Int. 2017, 109, 128–135. [Google Scholar] [CrossRef]
- Spratlen, M.J.; Perera, F.P.; Sjodin, A.; Wang, Y.; Herbstman, J.B.; Trasande, L. Understanding the Role of Persistent Organic Pollutants and Stress in the Association between Proximity to the World Trade Center Disaster and Birth Outcomes. Int. J. Environ. Res. Public Health 2022, 19, 2008. [Google Scholar] [CrossRef]
- Spratlen, M.J.; Perera, F.P.; Lederman, S.A.; Rauh, V.A.; Robinson, M.; Kannan, K.; Trasande, L.; Herbstman, J. The association between prenatal exposure to perfluoroalkyl substances and childhood neurodevelopment. Environ. Pollut. 2020, 263, 114444. [Google Scholar] [CrossRef]
- Spratlen, M.J.; Perera, F.P.; Lederman, S.A.; Robinson, M.; Kannan, K.; Trasande, L.; Herbstman, J. Cord blood perfluoroalkyl substances in mothers exposed to the World Trade Center disaster during pregnancy. Environ. Pollut. 2019, 246, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Trye, A.; Berger, K.I.; Naidu, M.; Attina, T.M.; Gilbert, J.; Koshy, T.T.; Han, X.; Marmor, M.; Shao, Y.; Giusti, R.; et al. Respiratory health and lung function in children exposed to the World Trade Center disaster. J. Pediatr. 2018, 201, 134–140.e6. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Koshy, T.T.; Gilbert, J.; Burdine, L.K.; Marmor, M.; Han, X.; Shao, Y.; Chemtob, C.; Attina, T.M.; Urbina, E.M. Cardiometabolic profiles of adolescents and young adults exposed to the World Trade Center Disaster. Environ. Res. 2018, 160, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Fiorino, E.K.; Attina, T.; Berger, K.; Goldring, R.; Chemtob, C.; Levy-Carrick, N.; Shao, Y.; Liu, M.; Urbina, E.; et al. Associations of World Trade Center exposures with pulmonary and cardiometabolic outcomes among children seeking care for health concerns. Sci. Total Environ. 2013, 444, 320–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Jones, R.; Reibman, J.; Bowers, J.; Fitzgerald, E.F.; Hwang, S.A. Reported respiratory symptoms and adverse home conditions after 9/11 among residents living near the World Trade Center. J. Asthma Off. J. Assoc. Care Asthma 2007, 44, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Brackbill, R.M.; Hadler, J.L.; DiGrande, L.; Ekenga, C.C.; Farfel, M.R.; Friedman, S.; Perlman, S.E.; Stellman, S.D.; Walker, D.J.; Wu, D.; et al. Asthma and posttraumatic stress symptoms 5 to 6 years following exposure to the World Trade Center terrorist attack. JAMA 2009, 302, 502–516. [Google Scholar] [CrossRef] [Green Version]
- Friedman, S.M.; Farfel, M.R.; Maslow, C.B.; Cone, J.E.; Brackbill, R.M.; Stellman, S.D. Comorbid persistent lower respiratory symptoms and posttraumatic stress disorder 5–6 years post-9/11 in responders enrolled in the World Trade Center Health Registry. Am. J. Ind. Med. 2013, 56, 1251–1261. [Google Scholar] [CrossRef] [Green Version]
- Reibman, J.; Lin, S.; Hwang, S.-A.A.; Gulati, M.; Bowers, J.A.; Rogers, L.; Berger, K.I.; Hoerning, A.; Gomez, M.; Fitzgerald, E.F. The World Trade Center residents’ respiratory health study: New-onset respiratory symptoms and pulmonary function. Environ. Health Perspect. 2005, 113, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Farfel, M.; DiGrande, L.; Brackbill, R.; Prann, A.; Cone, J.; Friedman, S.; Walker, D.J.; Pezeshki, G.; Thomas, P.; Galea, S.; et al. An overview of 9/11 experiences and respiratory and mental health conditions among World Trade Center Health Registry enrollees. J. Urban Health 2008, 85, 880–909. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Reibman, J.; Bowers, J.A.; Hwang, S.-A.; Hoerning, A.; Gomez, M.I.; Fitzgerald, E.F. Upper Respiratory Symptoms and Other Health Effects among Residents Living Near the World Trade Center Site after September 11, 2001. Am. J. Epidemiol. 2005, 162, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Banauch, G.I.; Alleyne, D.; Sanchez, R.; Olender, K.; Cohen, H.W.; Weiden, M.; Kelly, K.J.; Prezant, D.J. Persistent hyperreactivity and reactive airway dysfunction in firefighters at the World Trade Center. Am. J. Respir. Crit. Care Med. 2003, 168, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Jordan, H.T.; Friedman, S.M.; Reibman, J.; Goldring, R.M.; Archie, S.A.M.; Ortega, F.; Alper, H.; Shao, Y.; Maslow, C.B.; Cone, J.E. Risk factors for persistence of lower respiratory symptoms among community members exposed to the 2001 World Trade Center terrorist attacks. Occup. Environ. Med. 2017, 74, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Alper, H.E.; Yu, S.; Stellman, S.D.; Brackbill, R.M. Injury, intense dust exposure, and chronic disease among survivors of the World Trade Center terrorist attacks of 11 September 2001. Inj. Epidemiol. 2017, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Luft, B.; Schechter, C.; Kotov, R.; Broihier, J.; Reissman, D.; Guerrera, K.; Udasin, I.; Moline, J.; Harrison, D.; Friedman-Jimenez, G.; et al. Exposure, probable PTSD and lower respiratory illness among World Trade Center rescue, recovery and clean-up workers. Psychol. Med. 2012, 42, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafael, E.; Christie, J.; Teamer, J.A.; Bienenfeld, L.A.; Afilaka, A.A.; Crane, M.; Levin, S.M.; Herbert, R. Reflux symptoms and disorders and pulmonary disease in former World Trade Center rescue and recovery workers and volunteers. J. Occup. Environ. Med. 2008, 50, 1351–1354. [Google Scholar]
- Shao, Y.; Durmus, N.; Zhang, Y.; Pehlivan, S.; Fernandez-Beros, M.-E.; Umana, L.; Corona, R.; Addessi, A.; Abbott, S.A.; Smyth-Giambanco, S.; et al. The development of a WTC environmental health center pan-cancer database. Int. J. Environ. Res. Public Health 2021, 18, 1646. [Google Scholar] [CrossRef]
- Li, J.; Cone, J.E.; Kahn, A.R.; Brackbill, R.M.; Farfel, M.R.; Greene, C.M.; Hadler, J.L.; Stayner, L.T.; Stellman, S.D. Association between World Trade Center exposure and excess cancer risk. JAMA 2012, 308, 2479–2488. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yung, J.; Qiao, B.; Takemoto, E.; Goldfarb, D.G.; Zeig-Owens, R.; Cone, J.E.; Brackbill, R.M.; Farfel, M.R.; Kahn, A.R.; et al. Cancer incidence in World Trade Center rescue and recovery workers: 14 years of follow-up. JNCI J. Natl. Cancer Inst. 2022, 114, 210–219. [Google Scholar] [CrossRef]
- Moline, J.M.; Herbert, R.; Crowley, L.; Troy, K.; Hodgman, E.; Shukla, G.; Udasin, I.; Luft, B.; Wallenstein, S.; Landrigan, P.; et al. Multiple myeloma in World Trade Center responders: A case series. J. Occup. Environ. Med. 2009, 51, 896–902. [Google Scholar] [CrossRef]
- Solan, S.; Wallenstein, S.; Shapiro, M.; Teitelbaum, S.L.; Stevenson, L.; Kochman, A.; Kaplan, J.; Dellenbaugh, C.; Kahn, A.; Biro, F.N.; et al. Cancer incidence in world trade center rescue and recovery workers, 2001–2008. Environ. Health Perspect. 2013, 121, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Brackbill, R.M.; Liao, T.S.; Qiao, B.; Cone, J.E.; Farfel, M.R.; Hadler, J.L.; Kahn, A.R.; Konty, K.J.; Stayner, L.T.; et al. Ten-year cancer incidence in rescue/recovery workers and civilians exposed to the 11 September 2001 terrorist attacks on the World Trade Center. Am. J. Ind. Med. 2016, 59, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.Z.; Wallenstein, S.R.; Dasaro, C.R.; Lucchini, R.G.; Sacks, H.S.; Teitelbaum, S.L.; Thanik, E.S.; Crane, M.A.; Harrison, D.J.; Luft, B.J.; et al. Cancer in general responders participating in World Trade Center health programs, 2003–2013. JNCI Cancer Spectr. 2020, 4, pkz090. [Google Scholar] [CrossRef] [PubMed]
- DiGrande, L.; Perrin, M.A.; Thorpe, L.E.; Thalji, L.; Murphy, J.; Wu, D.; Farfel, M.; Brackbill, R.M. Posttraumatic stress symptoms, PTSD, and risk factors among lower Manhattan residents 2–3 years after the 11 September 2001 terrorist attacks. J. Trauma Stress 2008, 21, 264–273. [Google Scholar] [CrossRef]
- Rosen, R.L.; Levy-Carrick, N.; Reibman, J.; Xu, N.; Shao, Y.; Liu, M.; Ferri, L.; Kazeros, A.; Caplan-Shaw, C.E.; Pradhan, D.R.; et al. Elevated C-reactive protein and posttraumatic stress pathology among survivors of the 9/11 World Trade Center attacks. J. Psychiatr. Res. 2017, 89, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.A.; DiGrande, L.; Wheeler, K.; Thorpe, L.; Farfel, M.; Brackbill, R. Differences in PTSD prevalence and associated risk factors among World Trade Center disaster rescue and recovery workers. Am. J. Psychiatry 2007, 164, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Feder, A.; Mota, N.; Salim, R.; Rodriguez, J.; Singh, R.; Schaffer, J.; Schechter, C.B.; Cancelmo, L.M.; Bromet, E.J.; Katz, C.L.; et al. Risk, coping and PTSD symptom trajectories in World Trade Center responders. J. Psychiatr. Res. 2016, 82, 68–79. [Google Scholar] [CrossRef]
- Rosen, R.; Zhu, Z.; Shao, Y.; Liu, M.; Bao, J.; Levy-Carrick, N.; Reibman, J. Longitudinal change of PTSD symptoms in community members after the World Trade Center destruction. Int. J. Environ. Res. Public Health 2019, 16, 1215. [Google Scholar] [CrossRef] [Green Version]
- Bromet, E.; Hobbs, M.; Clouston, S.; Gonzalez, A.; Kotov, R.; Luft, B. DSM-IV post-traumatic stress disorder among World Trade Center responders 11–13 years after the disaster of 11 September 2001 (9/11). Psychol. Med. 2016, 46, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Kotov, R.; Bromet, E.J.; Schechter, C.; Broihier, J.; Feder, A.; Friedman-Jimenez, G.; Gonzalez, A.; Guerrera, K.; Kaplan, J.; Moline, J.; et al. Posttraumatic stress disorder and the risk of respiratory problems in World Trade Center responders: Longitudinal test of a pathway. Psychosom Med. 2015, 77, 438–448. [Google Scholar] [CrossRef]
- Kazeros, A.; Zhang, E.; Cheng, X.; Shao, Y.; Liu, M.; Qian, M.; Caplan-Shaw, C.; Berger, K.I.; Goldring, R.M.; Ghumman, M.; et al. Systemic Inflammation Associated With World Trade Center Dust Exposures and Airway Abnormalities in the Local Community. J. Occup. Environ. Med./Am. Coll. Occup. Environ. Med. 2015, 57, 610–616. [Google Scholar] [CrossRef]
- Norris, F.H.; Friedman, M.J.; Watson, P.J.; Byrne, C.M.; Diaz, E.; Kaniasty, K. 60,000 disaster victims speak: Part I. An empirical review of the empirical literature, 1981–2001. Psychiatry 2002, 65, 207–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Sonnega, A.; Bromet, E.; Hughes, M.; Nelson, C.B. Posttraumatic stress disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry 1995, 52, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zweig, K.C.; Brackbill, R.M.; Farfel, M.R.; Cone, J.E. Comorbidity amplifies the effects of post-9/11 posttraumatic stress disorder trajectories on health-related quality of life. Qual. Life Res. 2018, 27, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Thurston, G.D.; Kipen, H.; Annesi-Maesano, I.; Balmes, J.; Brook, R.D.; Cromar, K.; De Matteis, S.; Forastiere, F.; Forsberg, B.; Frampton, M.W.; et al. A joint ERS/ATS policy statement: What constitutes an adverse health effect of air pollution? An analytical framework. Eur. Respir. J. 2017, 49, 1600419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pun Vivian, C.; Manjourides, J.; Suh, H. Association of Ambient Air Pollution with Depressive and Anxiety Symptoms in Older Adults: Results from the NSHAP Study. Environ. Health Perspect. 2017, 125, 342–348. [Google Scholar]
- Kioumourtzoglou, M.-A.; Power, M.C.; Hart, J.E.; Okereke, O.I.; Coull, B.A.; Laden, F.; Weisskopf, M.G. The Association Between Air Pollution and Onset of Depression Among Middle-Aged and Older Women. Am. J. Epidemiol. 2017, 185, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Wisnivesky, J.P.; Teitelbaum, S.L.; Todd, A.C.; Boffetta, P.; Crane, M.; Crowley, L.; De la Hoz, R.E.; Dellenbaugh, C.; Harrison, D.; Herbert, R.; et al. Persistence of multiple illnesses in World Trade Center rescue and recovery workers: A cohort study. Lancet 2011, 378, 888–897. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, Y.; Liu, M.; Fernandez-Beros, M.E.; Qian, M.; Reibman, J. Gene-Environment Interaction between the IL1RN Variants and Childhood Environmental Tobacco Smoke Exposure in Asthma Risk. Int. J. Environ. Res. Public Health 2020, 17, 2036. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.C.; Thurston, G.D. Air Pollution, Oxidative Stress, and Diabetes: A Life Course Epidemiologic Perspective. Curr. Diabetes Rep. 2019, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D.; Ahn, J.; Cromar, K.R.; Shao, Y.; Reynolds, H.R.; Jerrett, M.; Lim, C.C.; Shanley, R.; Park, Y.; Hayes, R.B. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 2016, 124, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Alper, H.E.; Nguyen, A.-M.; Brackbill, R.M. Risk of stroke among survivors of the September 11, 2001, World Trade Center Disaster. J. Occup. Environ. Med. 2018, 60, e371–e376. [Google Scholar] [CrossRef] [PubMed]
- MohanKumar, S.M.J.; Campbell, A.; Block, M.; Veronesi, B. Particulate matter, oxidative stress and neurotoxicity. NeuroToxicology 2008, 29, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.; Thawani, S.; Cotrina, M.L.; Shao, Y.; Wong, E.S.; Stecker, M.M.; Wang, B.; Allen, A.; Wilkenfeld, M.; Vinik, E.J.; et al. Case-Control Study of Paresthesia Among World Trade Center-Exposed Community Members. J. Occup. Environ. Med. 2020, 62, 307–316. [Google Scholar] [CrossRef]
- Thawani, S.; Wang, B.; Shao, Y.; Reibman, J.; Marmor, M. Time to onset of paresthesia among community members exposed to the World Trade Center disaster. Int. J. Environ. Res. Public Health 2019, 16, 1429. [Google Scholar] [CrossRef] [Green Version]
- Rosen, R.; Shao, Y.; Zhang, Q.; Bao, J.; Zhang, Y.; Masurkar, A.; Wisniewski, T.; Urban, N.; Reibman, J. Cognitive function among World Trade Center-exposed community members with mental health symptoms. Int. J. Environ. Res. Public Health 2022, 19, 3440. [Google Scholar] [CrossRef]
- Clouston, S.A.; Hall, C.B.; Kritikos, M.; Bennett, D.A.; DeKosky, S.; Edwards, J.; Finch, C.; Kreisl, W.C.; Mielke, M.; Peskind, E.R.; et al. Cognitive impairment and World Trade Centre-related exposures. Nat. Rev. Neurol. 2022, 18, 103–116. [Google Scholar] [CrossRef]
- Mostafavi, N.; Vlaanderen, J.; Chadeau-Hyam, M.; Beelen, R.; Modig, L.; Palli, D.; Bergdahl, I.A.; Vineis, P.; Hoek, G.; Kyrtopoulos, S.; et al. Inflammatory markers in relation to long-term air pollution. Environ. Int. 2015, 81, 1–7. [Google Scholar] [CrossRef]
- Zeka, A.; Sullivan, J.R.; Vokonas, P.S.; Sparrow, D.; Schwartz, J. Inflammatory markers and particulate air pollution: Characterizing the pathway to disease. Int. J. Epidemiol. 2006, 35, 1347–1354. [Google Scholar] [CrossRef] [Green Version]
- Dabass, A.; Talbott, E.O.; Venkat, A.; Rager, J.; Marsh, G.M.; Sharma, R.K.; Holguin, F. Association of exposure to particulate matter (PM2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001–2008). Int. J. Hyg. Environ. Health 2016, 219, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Talbott, E.O.; Roberts, J.M.; Catov, J.M.; Sharma, R.K.; Ritz, B. Particulate air pollution exposure and C-reactive protein during early pregnancy. Epidemiology 2011, 22, 524–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shima, M. Air pollution and serum C-reactive protein concentration in children. J. Epidemiol. 2007, 17, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Viehmann, A.; Hertel, S.; Fuks, K.; Eisele, L.; Moebus, S.; Möhlenkamp, S.; Nonnemacher, M.; Jakobs, H.; Erbel, R.; Jöckel, K.-H. Long-term residential exposure to urban air pollution, and repeated measures of systemic blood markers of inflammation and coagulation. Occup. Environ. Med. 2015, 72, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Garciduenas, L.; Villarreal-Calderon, R.; Valencia-Salazar, G.; Henriquez-Roldan, C.; Gutiérrez-Castrellón, P.; Torres-Jardon, R.; Osnaya-Brizuela, N.; Romero, L.; Torres-Jardón, R.; Solt, A.; et al. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants. Inhal. Toxicol. 2008, 20, 499–506. [Google Scholar] [CrossRef]
- Elbarbary, M.; Oganesyan, A.; Honda, T.; Morgan, G.; Guo, Y.; Guo, Y.; Negin, J. Systemic inflammation (C-Reactive Protein) in older Chinese adults is associated with long-term exposure to ambient air pollution. Int. J. Environ. Res. Public Health 2021, 18, 3258. [Google Scholar] [CrossRef]
- Chen, J.-C.; Schwartz, J. Metabolic Syndrome and Inflammatory Responses to Long-Term Particulate Air Pollutants. Environ. Health Perspect. 2008, 116, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Hajat, A.; Allison, M.; Diez-Roux, A.V.; Jenny, N.S.; Jorgensen, N.W.; Szpiro, A.A.; Vedal, S.; Kaufman, J.D. Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation: A repeat-measures analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). Epidemiology 2015, 26, 310–320. [Google Scholar] [CrossRef]
- Gill, J.M.; Saligan, L.; Woods, S.; Page, G. PTSD is associated with an excess of inflammatory immune activities. Perspect. Psychiatr. Care 2009, 45, 262–277. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Valkanova, V.; Ebmeier, K.P.; Allan, C.L. CRP, IL-6 and depression: A systematic review and meta-analysis of longitudinal studies. J. Affect. Disord 2013, 150, 736–744. [Google Scholar] [CrossRef]
- Miller, R.J.; Sutherland, A.G.; Hutchison, J.D.; Alexander, D.A. C-reactive protein and interleukin 6 receptor in post-traumatic stress disorder: A pilot study. Cytokine 2001, 13, 253–255. [Google Scholar] [CrossRef]
- von Känel, R.; Hepp, U.; Kraemer, B.; Traber, R.; Keel, M.; Mica, L.; Schnyder, U. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J. Psychiatr. Res. 2007, 41, 744–752. [Google Scholar] [CrossRef]
- Solomon, Z.; Levin, Y.; Assayag, E.B.; Furman, O.; Shenhar-Tsarfaty, S.; Berliner, S.; Ohry, A. The implication of combat stress and PTSD trajectories in metabolic syndrome and elevated C-reactive protein levels: A longitudinal study. J. Clin. Psychiatry 2017, 78, e1180–e1186. [Google Scholar] [CrossRef]
- Sumner, J.A.; Chen, Q.; Roberts, A.L.; Winning, A.; Rimm, E.B.; Gilsanz, P.; Glymour, M.M.; Tworoger, S.S.; Koenen, K.C.; Kubzansky, L.D. Cross-sectional and longitudinal associations of chronic posttraumatic stress disorder with inflammatory and endothelial function markers in women. Biol. Psychiatry 2017, 82, 875–884. [Google Scholar] [CrossRef]
- Cox, B.J.; Clara, I.P.; Enns, M.W. Posttraumatic stress disorder and the structure of common mental disorders. Depress. Anxiety 2002, 15, 168–171. [Google Scholar] [CrossRef]
- Marshall, G.N.; Schell, T.L.; Miles, J.N. A multi-sample confirmatory factor analysis of PTSD symptoms: What exactly is wrong with the DSM-IV structure? Clin. Psychol. Rev. 2013, 33, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, J.J.; Oehlert, M.E.; Multon, K.D.; Sumerall, S.W. Dementia and Cognitive Impairment among U.S. Veterans With a History of MDD or PTSD: A Retrospective Cohort Study Based on Sex and Race. J. Aging Health 2018, 31, 1398–1422. [Google Scholar] [CrossRef]
- Schuitevoerder, S.; Rosen, J.W.; Twamley, E.W.; Ayers, C.R.; Sones, H.; Lohr, J.B.; Goetter, E.M.; Fonzo, G.A.; Holloway, K.J.; Thorp, S.R. A meta-analysis of cognitive functioning in older adults with PTSD. J. Anxiety Disord. 2013, 27, 550–558. [Google Scholar] [CrossRef]
- Alper, H.E.; Tuly, R.A.; Seil, K.; Brite, J. Post-9/11 Mental Health Comorbidity Predicts Self-Reported Confusion or Memory Loss in World Trade Center Health Registry Enrollees. Int. J. Environ. Res. Public Health 2020, 17, 7330. [Google Scholar] [CrossRef]
- Singh, A.; Zeig-Owens, R.; Rabin, L.; Schwartz, T.; Webber, M.P.; Appel, D.; Prezant, D.J.; Hall, C.B. PTSD and depressive symptoms as potential mediators of the association between World Trade Center exposure and subjective cognitive concerns in rescue/recovery workers. Int. J. Environ. Res. Public Health 2020, 17, 5683. [Google Scholar] [CrossRef]
- Durmus, N.; Shao, Y.; Arslan, A.A.; Zhang, Y.; Pehlivan, S.; Fernandez-Beros, M.-E.; Umana, L.; Corona, R.; Smyth-Giambanco, S.; Abbott, S.A.; et al. Characteristics of cancer patients in the world Trade center environmental health center. Int. J. Environ. Res. Public Health 2020, 17, 7190. [Google Scholar] [CrossRef] [PubMed]
- Rom, W.N.; Reibman, J.; Rogers, L.; Weiden, M.D.; Oppenheimer, B.; Berger, K.; Goldring, R.; Harrison, D.; Prezant, D. Emerging exposures and respiratory health: World Trade Center dust. Proc. Am. Thorac. Soc. 2010, 7, 142–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogowski, O.; Vered, Y.; Shapira, I.; Hirsh, M.; Zakut, V.; Berliner, S. Introducing the wide range C-reactive protein (wr-CRP) into clinical use for the detection of microinflammation. Clin. Chim. Acta 2005, 358, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.T.; Willerson, J.T. Coming of age of C-reactive protein: Using inflammation markers in cardiology. Circulation 2003, 107, 370–371. [Google Scholar] [CrossRef]
- Kazeros, A.; Maa, M.-T.; Patrawalla, P.; Liu, M.; Shao, Y.; Qian, M.; Turetz, M.; Parsia, S.; Caplan-Shaw, C.; Berger, K.I.; et al. Elevated peripheral eosinophils are associated with new-onset and persistent wheeze and airflow obstruction in world trade center-exposed individuals. J. Asthma 2013, 50, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Weathers, F.W.L.B.; Herman, D.S.; Huska, J.A.; Keane, T.M. The PTSD Checklist (PCL): Reliability, Validity, and Diagnostic Utility; International Society for Truamatic Stress Studies: Chicago, IL, USA, 1993. [Google Scholar]
- Derogatis, L.R.; Lipman, R.S.; Rickels, K.; Uhlenhuth, E.H.; Covi, L. The Hopkins Symptom Checklist (HSCL): A self-report symptom inventory. Behav. Sci. 1974, 19, 1–15. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Judd, C.M.; Kenny, D.A. Process analysis: Estimating mediation in treatment evaluations. Eval. Rev. 1981, 5, 602–619. [Google Scholar] [CrossRef]
- James, L.R.; Brett, J.M. Mediators, moderators, and tests for mediation. J. Appl. Psychol. 1984, 69, 307–321. [Google Scholar] [CrossRef]
- Imai, K.; Keele, L.; Tingley, D. A general approach to causal mediation analysis. Psychol. Methods 2010, 15, 309–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tingley, D.; Teppei, H.; Mit, Y.; Keele, L.J.; State, P.; Imai, K. Mediation: R package for causal mediation analysis. J. Stat. Softw. 2014, 59, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Qian, M.; Cheng, Q.; Berger, K.I.; Shao, Y.; Turetz, M.; Kazeros, A.; Parsia, S.; Goldring, R.M.; Caplan-Shaw, C.; et al. Longitudinal spirometry among patients in a treatment program for community members with World Trade Center-related illness. J. Occup. Environ. Med./Am. Coll. Occup. Environ. Med. 2012, 54, 1208–1213. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.G.; Nievergelt, C.M.; O’Connor, D.T. Biomarkers of PTSD: Neuropeptides and immune signaling. Neuropharmacology 2012, 62, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Passos, I.C.; Vasconcelos-Moreno, M.P.; Costa, L.G.; Kunz, M.; Brietzke, E.; Quevedo, J.; Salum, G.; Magalhães, P.V.; Kapczinski, F.; Kauer-Sant’Anna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2015, 2, 1002–1012. [Google Scholar] [CrossRef]
- Canetti, D.; Russ, E.; Luborsky, J.; Gerhart, J.I.; Hobfoll, S.E. Inflamed by the flames? The impact of terrorism and war on immunity. J. Trauma. Stress 2014, 27, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Michopoulos, V.; Rothbaum, A.O.; Jovanovic, T.; Almli, L.M.; Bradley, B.; Rothbaum, B.O.; Gillespie, C.F.; Ressler, K.J. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am. J. Psychiatry 2015, 172, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.D.; Lee, S.; Yoon, S. Inflammation in post-traumatic stress disorder (PTSD): A review of potential correlates of PTSD with a neurological perspective. Antioxidants 2020, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef]
Demographic Characteristics | |
---|---|
Gender, n (%) | |
Female | 373 (51.0) |
Male | 358 (49.0) |
Age on 9/11 in year, mean (SD) a | 42.8 (11.5) |
Race/ethnicity, n (%) | |
Hispanic | 289 (39.5) |
Non-Hispanic white | 221 (30.2) |
Non-Hispanic Black | 143 (19.6) |
Other | 78 (10.7) |
Education, n (%) | |
≤High school | 252 (34.5) |
>High school | 479 (65.5) |
Income, n (%) | |
≤$30,000/year | 465 (63.6) |
>$30,000/year | 266 (36.4) |
BMI, mean (SD) | 28.54 (6.2) |
Ever smoker, n (%) | |
Yes | 230 (31.5) |
No | 501 (68.5) |
WTC Exposures | |
WTC dust cloud traumatic exposure, n (%) | |
Yes | 368 (50.3) |
No | 363 (49.7) |
WTC exposure category classification, n (%) | |
Local Worker | 372 (50.9) |
Resident | 130 (17.8) |
Clean-up worker | 138 (18.9) |
Other | 91 (12.5) |
Lower respiratory symptoms within a month prior to enrollment | |
Cough, n (%) | |
Yes | 499 (68.2) |
No | 232 (31.7) |
Wheezing, n (%) | |
Yes | 378 (51.7) |
No | 353 (48.3) |
Chest tightness, n (%) | |
Yes | 463 (63.3) |
No | 268 (36.7) |
Dyspnea at rest, n (%) | |
Yes | 296 (40.5) |
No | 435 (59.5) |
Positive mental health score | |
PTSD, n (%) | |
Yes (PCL ≥ 44) | 316 (43.2) |
No (PCL < 44) | 415 (56.8) |
Depression, n (%) | |
Yes (HSCL-D ≥ 1.75) | 427 (58.4) |
No (HSCL-D < 1.75) | 304 (41.6) |
Anxiety, n (%) | |
Yes (HSCL-A ≥ 1.75) | 370 (50.6) |
No (HSCL-A < 1.75) | 361 (49.4) |
Any of above mental health issues, n (%) | |
Yes | 476 (65.1) |
No | 255 (34.9) |
CRP | |
CRP in mg/L, median [IQR] b | 1.6 [0.4, 5.3] |
CRP > 3 mg/L, n (%) | |
Yes | 269 (36.8) |
No | 462 (63.2) |
WBC | |
WBC count in 103 cells/mL, median [IQR] | 6.9 [5.7, 8.3] |
PTSD | p-Value c | ||
---|---|---|---|
No (PCL < 44) n = 415 | Yes (PCL ≥ 44) n = 316 | ||
Demographics | |||
Gender, n (%) | 0.432 | ||
Female | 206 (49.6) | 167 (52.8) | |
Male | 209 (50.4) | 149 (47.2) | |
Age on 911 in year, mean (SD) a | 42.9 (12.6) | 42.6 (9.7) | 0.725 |
Race/ethnicity, n (%) | 0.002 | ||
Hispanic | 139 (33.5) | 150 (47.5) | |
Non-Hispanic white | 139 (33.5) | 82 (25.9) | |
Non-Hispanic Black | 91 (21.9) | 52 (16.5) | |
Other | 46 (11.1) | 32 (10.1) | |
Education, n (%) | 0.002 | ||
≤High school | 123 (29.6) | 129 (40.8) | |
>High school | 292 (70.4) | 187 (59.2) | |
Income, n (%) | 0.001 | ||
≤$30,000/year | 242 (58.3) | 223 (70.6) | |
>$30,000/year | 173 (41.7) | 93 (29.4) | |
BMI, mean (SD) | 28.35 (6.3) | 28.79 (6.1) | 0.344 |
Ever smoker, n (%) | 0.638 | ||
Yes | 134 (32.3) | 96 (30.4) | |
No | 281 (67.7) | 220 (69.6) | |
Exposures | |||
WTC dust cloud traumatic exposure, n (%) | 0.006 | ||
Yes | 190 (45.8) | 178 (56.3) | |
No | 225 (54.2) | 138 (43.7) | |
Exposure classification, n (%) | 0.042 | ||
Worker | 212 (51.1) | 160 (50.6) | |
Resident | 82 (19.8) | 48 (15.2) | |
Clean-up worker | 65 (15.0) | 73 (23.1) | |
Other | 56 (13.5) | 35 (11.1) | |
Lower respiratory symptoms | |||
Cough, n (%) | 0.011 | ||
Yes | 267 (64.3) | 232 (73.4) | |
No | 148 (35.7) | 84 (26.6) | |
Wheeze, n (%) | 0.002 | ||
Yes | 193 (46.5) | 185 (58.5) | |
No | 222 (53.5) | 131 (41.5) | |
Chest tightness, n (%) | <0.001 | ||
Yes | 232 (55.9) | 231 (73.1) | |
No | 183 (44.1) | 85 (26.9) | |
Dyspnea at rest, n (%) | <0.001 | ||
Yes | 144 (34.7) | 152 (48.1) | |
No | 271 (65.3) | 164 (51.9) | |
CRP | |||
CRP in mg/L, median [IQR] b | 1.3 [0.3, 4.5] | 1.9 [0.5, 5.8] | 0.004 |
CRP > 3 mg/L, n (%) | 0.041 | ||
Yes | 139 (33.5) | 130 (41.1) | |
No | 276 (66.5) | 186 (58.9) | |
WBC | |||
WBC in 103 cells/mL, median [IQR] | 6.7 [5.6, 8.2] | 6.9 [5.8, 8.4] | 0.214 |
Model (1) (Path c) | Model (2) (Path a) | Model (3) (Path b and c’) | ||||
---|---|---|---|---|---|---|
Log (CRP) | PTSD (PCL Score) | Log (CRP) | ||||
β | p-Value | β | p-Value | β | p-Value | |
(Intercept) | −10.95 | <0.01 | 43.15 | <0.01 | −11.35 | <0.01 |
PCL score | 0.01 | 0.01 | ||||
WDCTE | 0.27 | 0.02 | 5.06 | <0.01 | 0.22 | 0.06 |
Adjusted factors: | ||||||
Sex—Male | −0.20 | 0.07 | −1.78 | 0.12 | −0.18 | 0.10 |
Age on 9/11 | 0.01 | 0.21 | 0.001 | 0.99 | 0.01 | 0.21 |
Race/ethnicity (ref = Hispanic) | ||||||
NH-White | −0.14 | 0.39 | −4.04 | 0.02 | −0.10 | 0.53 |
NH-Black | −0.003 | 0.98 | −5.77 | <0.01 | 0.05 | 0.77 |
Other | 0.09 | 0.68 | −3.98 | 0.07 | 0.12 | 0.55 |
Education > high school | −0.02 | 0.87 | −1.31 | 0.35 | −0.01 | 0.95 |
Income > $30,000/year | −0.04 | 0.74 | −4.56 | <0.01 | 0.002 | 0.99 |
log(BMI) | 3.17 | <0.01 | −0.48 | 0.87 | 3.17 | <0.01 |
Ever smoker (>1 p-y) | 0.44 | <0.01 | −1.16 | 0.36 | 0.45 | <0.01 |
Exposure category (ref = Clean-up Worker) | ||||||
Resident | 0.08 | 0.71 | −4.34 | 0.06 | 0.08 | 0.68 |
Local Worker | 0.06 | 0.75 | −1.89 | 0.33 | 0.12 | 0.58 |
Other | 0.12 | 0.59 | −3.92 | 0.08 | 0.15 | 0.48 |
Lower respiratory symptoms | ||||||
Cough | 0.33 | 0.01 | 1.38 | 0.29 | 0.32 | 0.01 |
Wheezing | 0.12 | 0.33 | 1.35 | 0.29 | 0.11 | 0.38 |
Chest tightness | −0.08 | 0.49 | 4.03 | <0.01 | −0.12 | 0.32 |
Dyspnea at rest | 0.15 | 0.21 | 3.43 | 0.01 | 0.12 | 0.32 |
Mediation Effect of PCL score | ||||||
β | 95%CI Lower * | 95%CI Upper * | p-value * | |||
Total effect (c) | 0.27 | 0.03 | 0.49 | 0.03 | ||
Direct effect c’) | 0.22 | −0.02 | 0.45 | 0.07 | ||
Mediation effect (c-c’ = a * b) | 0.05 | 0.01 | 0.09 | 0.01 | ||
Proportion Mediated ((c-c’)/c) | 17.0% | 2.1% | 85% | 0.03 |
Re-Experiencing | Avoidance | Negative Cognitions/Mood | Arousal | |||||
---|---|---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Total effect | 0.27 | 0.03 | 0.27 | 0.03 | 0.27 | 0.03 | 0.27 | 0.03 |
Direct effect | 0.22 | 0.07 | 0.24 | 0.05 | 0.23 | 0.06 | 0.24 | 0.05 |
Mediation effect | 0.05 | <0.01 | 0.03 | 0.02 | 0.04 | 0.02 | 0.03 | 0.12 |
Proportion Mediated | 17.5% | 0.03 | 10.1% | 0.05 | 13.1% | 0.05 | 9.0% | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Rosen, R.; Reibman, J.; Shao, Y. Posttraumatic Stress Disorder Mediates the Association between Traumatic World Trade Center Dust Cloud Exposure and Ongoing Systemic Inflammation in Community Members. Int. J. Environ. Res. Public Health 2022, 19, 8622. https://doi.org/10.3390/ijerph19148622
Zhang Y, Rosen R, Reibman J, Shao Y. Posttraumatic Stress Disorder Mediates the Association between Traumatic World Trade Center Dust Cloud Exposure and Ongoing Systemic Inflammation in Community Members. International Journal of Environmental Research and Public Health. 2022; 19(14):8622. https://doi.org/10.3390/ijerph19148622
Chicago/Turabian StyleZhang, Yian, Rebecca Rosen, Joan Reibman, and Yongzhao Shao. 2022. "Posttraumatic Stress Disorder Mediates the Association between Traumatic World Trade Center Dust Cloud Exposure and Ongoing Systemic Inflammation in Community Members" International Journal of Environmental Research and Public Health 19, no. 14: 8622. https://doi.org/10.3390/ijerph19148622
APA StyleZhang, Y., Rosen, R., Reibman, J., & Shao, Y. (2022). Posttraumatic Stress Disorder Mediates the Association between Traumatic World Trade Center Dust Cloud Exposure and Ongoing Systemic Inflammation in Community Members. International Journal of Environmental Research and Public Health, 19(14), 8622. https://doi.org/10.3390/ijerph19148622