Hydrocalumite as well as the Formation of Scheelite Induced by Its Dissolution, Removing Aqueous Tungsten with Varying Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Hydrocalumite
2.2. Tungsten Removal Experiments
2.3. PHREEQC Modeling
3. Results and Discussion
3.1. Characterization of Synthetic Hydrocalumite
3.2. Kinetic and Isothermal Experimental Studies of Tungsten Removal
3.3. Effects of pH on Tungstate Removal
3.4. Characterization of Solid Samples Reacted with Solution Tungsten
3.4.1. X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM)
3.4.2. X-ray Photoelectron Spectroscopy (XPS)
3.5. Chemical Compositions of Tungsten-Bearing Solutions after Reaction with Hydrocalumite and Their PHREEQC Simulations
3.6. Tungsten Removal Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammed, G.I.; Ahmad, W.; Alwael, H.; Saigl, Z.M.; Al-Eryani, D.A.; Bashammakh, A.S.; El-Shahawi, M.S. A quercetin based fluorescent chemical sensor for ultra-sensitive determination and speciation of tungsten species in water. Spectroc. Acta Part A-Molec. Biomolec. Spectr. 2020, 229, 117929. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Craveiro, R.; Faria, P.; Silva, A.S.; Mateus, E.P.; Barreiros, S.; Paiva, A.; Ribeiro, A.B. Electrodialytic removal of tungsten and arsenic from secondary mine resources—Deep eutectic solvents enhancement. Sci. Total Environ. 2020, 710, 136364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsospyros, A.; Braida, W.; Christodoulatos, C.; Dermatas, D.; Strigul, N. A review of tungsten: From environmental obscurity to scrutiny. J. Hazard. Mater. 2006, 136, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Steenstra, P.; Strigul, N.; Harrison, J. Tungsten in Washington State surface waters. Chemosphere 2020, 242, 125151. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, M.V.; Adebolu, O.O.; Morrow, B.M.; Cerreta, J.M. Evaluation of pulmonary response to inhaled tungsten (IV) oxide nanoparticles in golden Syrian hamsters. Exp. Biol. Med. 2017, 242, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Frawley, R.P.; Smith, M.J.; White, K.L.; Elmore, S.A.; Herbert, R.; Moore, R.; Staska, L.M.; Behl, M.; Hooth, M.J.; Kissling, G.E.; et al. Immunotoxic effects of sodium tungstate dihydrate on female B6C3F1/N mice when administered in drinking water. J. Immunotoxicol. 2016, 13, 666–675. [Google Scholar] [CrossRef] [Green Version]
- McCain, W.C.; Crouse, L.C.B.; Bazar, M.A.; Roszell, L.E.; Leach, G.J.; Middleton, J.R.; Reddy, G. Subchronic Oral Toxicity of Sodium Tungstate in Sprague-Dawley Rats. Int. J. Toxicol. 2015, 34, 336–345. [Google Scholar] [CrossRef]
- Tyrrell, J.; Galloway, T.S.; Abo-Zaid, G.; Melzer, D.; Depledge, M.H.; Osborne, N.J. High Urinary Tungsten Concentration Is Associated with Stroke in the National Health and Nutrition Examination Survey 1999–2010. PLoS ONE 2013, 8, e77546. [Google Scholar] [CrossRef] [Green Version]
- Marquet, P.; Francois, B.; Vignon, P.; Lachatre, G. A soldier who had seizures after drinking quarter of a litre of wine. Lancet 1996, 348, 1070. [Google Scholar] [CrossRef]
- Clausen, J.L.; Korte, N. Environmental fate of tungsten from military use. Sci. Total Environ. 2009, 407, 2887–2893. [Google Scholar] [CrossRef]
- Hallstrom, L.P.B.; Alakangas, L.; Martinsson, O. Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjoberg, Sweden. Environ. Sci. Pollut. Res. 2020, 27, 6180–6192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, S.; Hsieh, H.L.; Chen, C.; Tseng, C.M.; Huang, S.; Huang, C.; Huang, Y.T.; Radashevsky, V.; Lin, S.H. Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing. J. Hazard. Mater. 2011, 189, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, Y.; Luo, L. Tungsten from typical magmatic hydrothermal systems in China and its environmental transport. Sci. Total Environ. 2019, 657, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Ihsanullah, I.; Sajid, M.; Kabeer, M.; Shemsi, A.M.; Atieh, M.A. First Investigations on the Removal of Tungsten Species from Water Using Multi-walled Carbon Nanotubes. Water Air. Soil. Poll. 2020, 231, 119. [Google Scholar] [CrossRef]
- Du, H.; Xu, Z.; Hu, M.; Zhang, H.; Peacock, C.L.; Liu, X.; Nie, N.; Xue, Q.; Lei, M.; Tie, B.Q. Natural organic matter decreases uptake of W(VI), and reduces W(VI) to W(V), during adsorption to ferrihydrite. Chem. Geol. 2020, 540, 119567. [Google Scholar] [CrossRef]
- Li, R.; Tang, Y.; Li, X.; Tang, C.; Zhu, Y.; Wang, S.; Lin, C. Adsorption behavior of tungstate on montmorillonite as a function of pH, ionic strength and competitive anion. Desalin. Water Treat. 2019, 150, 274–281. [Google Scholar] [CrossRef]
- Batueva, T.D.; Shcherban, M.G.; Kondrashova, N.B. Mesoporous Silica Materials and Their Sorption Capacity for Tungsten(VI) and Molybdenum(VI) Ions. Inorg. Mater. 2019, 55, 1146–1150. [Google Scholar] [CrossRef]
- Iwai, T.; Hashimoto, Y. Adsorption of tungstate (WO4) on birnessite, ferrihydrite, gibbsite, goethite and montmorillonite as affected by pH and competitive phosphate (PO4) and molybdate (MoO4) oxyanions. Appl. Clay Sci. 2017, 143, 372–377. [Google Scholar] [CrossRef]
- Cui, M.; Johannesson, K.H. Comparison of tungstate and tetrathiotungstate adsorption onto pyrite. Chem. Geol. 2017, 464, 57–68. [Google Scholar] [CrossRef]
- Li, R.; Lin, C.; Liu, X. Adsorption of tungstate on kaolinite: Adsorption models and kinetics. Rsc. Adv. 2016, 6, 19872–19877. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, Q. Tungsten speciation and its geochemical behavior in geothermal water: A review. E3s Web Conf. 2019, 98, 07005. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Guo, Q.; Cao, Y. Uptake of aqueous tungsten and molybdenum by a nitrate intercalated, pyroaurite-like anion exchangeable clay. Appl. Clay Sci. 2019, 180, 105179. [Google Scholar] [CrossRef]
- Vieille, L.; Rousselot, I.; Leroux, F.; Besse, J.P.; Taviot-Gueho, C. Hydrocalumite and its polymer derivatives. 1. Reversible thermal behavior of Friedel’s salt: A direct observation by means of high-temperature in situ powder X-ray diffraction. Chem. Mat. 2003, 15, 4361–4368. [Google Scholar] [CrossRef]
- Guo, Q.; Tian, J. Removal of fluoride and arsenate from aqueous solution by hydrocalumite via precipitation and anion exchange. Chem. Eng. J. 2013, 231, 121–131. [Google Scholar] [CrossRef]
- Grover, K.; Komarneni, S.; Katsuki, H. Synthetic hydrotalcite-type and hydrocalumite-type layered double hydroxides for arsenate uptake. Appl. Clay Sci. 2010, 48, 631–637. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, N.; Mao, X.; Wang, M.; Blecker, C.; Maesen, P.; Fan, B.; Wang, F. Concentrations of Total As and As Spe-ciation in Chinese Rice Wine and Associated Risk Assessment in Main Producing Provinces. At. Spectrosc. 2021, 42, 141–147. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, S.; Min, H.; Li, J.; Wu, X.; Sheng, D.; Cui, X.; Chen, Y.; Li, C.; Lian, H.; et al. Novel Magnetic Ion-imprinted Polymer Extraction of Trace Ce(III) in Environmental and Mineral Samples and Determination by ICP-MS. At. Spectrosc. 2021, 42, 217–226. [Google Scholar] [CrossRef]
- Althobiti, R.A.; Beauchemin, D. An Isotopic Study of Bio-accessible Lead in Wheat, Miswak Toothbrush and Miswak Fruit Using the Continuous On-line Leaching Method with Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc. 2021, 42, 271–277. [Google Scholar] [CrossRef]
- Zhu, Y.; Ariga, T.; Nakano, K.; Shikamori, Y. Trends and Advances in Inductively Coupled Plasma Tandem Quadruple Mass Spectrometry (ICP-QMS/QMS) With Reaction Cell. At. Spectrosc. 2021, 42, 299–309. [Google Scholar] [CrossRef]
- Kierulf, A.; Pytyck, C.; Beauchemin, D. Continuous On-line Leaching to Evaluate the Effect of Toasting on Bioaccessibility and Pb Source.Apportionment of Alternative Breads. At. Spectrosc. 2021, 42, 365–373. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, D.; Feng, T.; Jin, L.; Xiong, D.; Yu, J.; Xu, Q.; Huang, R.; Hu, S. Determination of Silver in Geological Samples Using Aerosol Dilution ICP-MS After Water-bath Extraction with Inverse Aqua Regia. At. Spectrosc. 2021, 42, 374–382. [Google Scholar] [CrossRef]
- Lin, X.; Guo, W.; Jin, L.; Hu, S. Elemental Analysis of Individual Fluid Inclusions by Laser Ablation-ICP-MS. At. Spectrosc. 2020, 41, 1–10. [Google Scholar] [CrossRef]
- Zhang, P.; Qian, G.; Xu, Z.; Shi, H.; Ruan, X.X.; Yang, J.; Frost, R.L. Effective adsorption of sodium dodecylsulfate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism. J. Colloid Interf. Sci. 2012, 367, 264–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bothe, J.V.; Brown, P.W. PhreeqC modeling of Friedel’s salt equilibria at 23 +/− 1 °C. Cem. Concr. Res. 2004, 34, 1057–1063. [Google Scholar] [CrossRef]
- Wagh, A.S. Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications; Elsevier Science: Amsterdam, The Netherlands, 2004; p. 283. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Guo, Q.; Cao, Y.; Chelnokov, G.A. Hydrocalumite as well as the Formation of Scheelite Induced by Its Dissolution, Removing Aqueous Tungsten with Varying Concentrations. Int. J. Environ. Res. Public Health 2022, 19, 8630. https://doi.org/10.3390/ijerph19148630
Yang C, Guo Q, Cao Y, Chelnokov GA. Hydrocalumite as well as the Formation of Scheelite Induced by Its Dissolution, Removing Aqueous Tungsten with Varying Concentrations. International Journal of Environmental Research and Public Health. 2022; 19(14):8630. https://doi.org/10.3390/ijerph19148630
Chicago/Turabian StyleYang, Chen, Qinghai Guo, Yaowu Cao, and Georgii A. Chelnokov. 2022. "Hydrocalumite as well as the Formation of Scheelite Induced by Its Dissolution, Removing Aqueous Tungsten with Varying Concentrations" International Journal of Environmental Research and Public Health 19, no. 14: 8630. https://doi.org/10.3390/ijerph19148630
APA StyleYang, C., Guo, Q., Cao, Y., & Chelnokov, G. A. (2022). Hydrocalumite as well as the Formation of Scheelite Induced by Its Dissolution, Removing Aqueous Tungsten with Varying Concentrations. International Journal of Environmental Research and Public Health, 19(14), 8630. https://doi.org/10.3390/ijerph19148630