Integration of Omics Approaches Enhances the Impact of Scientific Research in Environmental Applications
1. Introduction
2. Omics Approaches in Environmental Research
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/about/governance/constitution (accessed on 1 July 2022).
- Prüss-Üstün, A.; Wolf, J.; Corvalán, C.F.; Bos, R.; Neira, M.P. Preventing Disease through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ampatzoglou, A.; Gruszecka-Kosowska, A.; Torres-Sánchez, A.; López-Moreno, A.; Cerk, K.; Ortiz Sandoval, P.; Monteoliva-Sánchez, M.; Aguilera, M. Incorporating the gut microbiome in the risk assessment of xenobiotics and the identification of beneficial components for One Health. Front. Microbiol. 2022, 13, 872583. [Google Scholar] [CrossRef]
- Bronzwaer, S.; Geervliet, M.; Hugas, M.; Url, B. EFSA’s expertise supports one health policy needs. EFSA J. 2021, 19, e190501. [Google Scholar] [CrossRef]
- Manlove, K.R.; Walker, J.G.; Craft, M.E.; Huyvaert, K.P.; Joseph, M.B.; Miller, R.S.; Nol, P.; Patyk, K.A.; O’Brien, D.; Walsh, D.P.; et al. “One Health” or Three? Publication Silos Among the One Health Disciplines. PLoS Biol. 2016, 14, e1002448. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 1 July 2022).
- Humboldt-Dachroeden, S.; Rubin, O.; Frid-Nielsen, S. The state of One Health research across disciplines and sectors—A bibliometric analysis. One Health 2020, 10, 100146. [Google Scholar] [CrossRef]
- Gibbs, R.A. The Human Genome Project changed everything. Nat. Rev. Genet. 2020, 21, 575–576. [Google Scholar] [CrossRef]
- Bentley, D.R. The Hyman Genome Project—An overview. Med. Res. Rev. 2000, 20, 189–196. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Zorin, A.; Dass, G.; Vu, M.T.; Xu, P.; Glont, M.; Vizcaíno, J.A.; Jarnuczak, A.F.; Petryszak, R.; Ping, P.; et al. Quantifying the impact of public omics data. Nat. Commun. 2019, 5, 3512. [Google Scholar] [CrossRef] [Green Version]
- Farré-Maduell, E.; Casals-Pascual, C. The origins of gut microbiome research in Europe: From Escherich to Nissle. Hum. Microbiome J. 2019, 14, 100065. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, D.; Cichy, W.; Przysławski, J.; Drzymała-Czyż, S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv. Med. Sci. 2021, 66, 284–292. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Lindell, A.E.; Zimmermann-Kogadeeva, M.; Patil, K.R. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat. Rev. Microbiol. 2022, 20, 431–443. [Google Scholar] [CrossRef]
- Aguilera, M.; López-Moreno, A.; Cerk, K.; Suárez, A.; Houdeau, E.; Lamas, B.; Cartier, C.; Gaultier, E.; Zalko, D.; Van Pamel, D.; et al. OBEMIRISK-Knowledge platform for assessing the risk of bisphenols on gut microbiota and its role in obesogenic phenotype: Looking for biomarkers. EFSA J. 2022, 19, 7313E. [Google Scholar] [CrossRef]
- López-Moreno, A.; Ruiz-Moreno, Á.; Pardo-Cacho, J.; Cerk, K.; Torres-Sánchez, A.; Ortiz, P.; Úbeda, M.; Aguilera, M. Culturing and molecular approaches for identifying microbiota taxa impacting children’s obesogenic phenotypes related to xenobiotic dietary exposure. Nutrients 2022, 14, 241. [Google Scholar] [CrossRef]
- López-Moreno, A.; Acuña, I.; Torres-Sánchez, A.; Ruiz-Moreno, Á.; Cerk, K.; Rivas, A.; Suárez, A.; Monteoliva-Sánchez, M.; Aguilera, M. Next generation probiotics for neutralizing obesogenic effects: Taxa culturing searching strategies. Nutrients 2021, 13, 1617. [Google Scholar] [CrossRef]
- Aguilera, M.; Lamas, B.; Van Pamel, E.; Bhide, M.; Houdeau, E.; Rivas, A. Editorial: Risk of dietary hazardous substances and impact on human microbiota: Possible role in several dysbiosis phenotypes. Front. Microbiol. 2021, 23, 669480. [Google Scholar] [CrossRef]
- Monteagudo, C.; Robles-Aguilera, V.; Salcedo-Bellido, I.; Gálvez-Ontiveros, Y.; Samaniego-Sánchez, C.; Aguilera, M.; Zafra-Gómez, A.; Burgos, M.A.M.; Rivas, A. Dietary exposure to parabens and body mass index in an adolescent Spanish population. Environ. Res. 2021, 201, 111548. [Google Scholar] [CrossRef]
- Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M.J.; Aguilera, M.; Monteagudo, C.; Rivas, A. Bisphenol A analogues in food and their hormonal and obesogenic effects: A review. Nutrients 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Cerk, K.; Aguilera, M. Microbiota analysis for risk assessment: Evaluation of hazardous dietary substances and its potential role on the gut microbiome variability and dysbiosis. EFSA J. 2022, 20, e200404. [Google Scholar] [CrossRef]
- Ramírez, V.; Gálvez-Ontiveros, Y.; González-Domenech, P.J.; Baca, M.Á.; Rodrigo, L.; Rivas, A. Role of endocrine disrupting chemicals in children’s neurodevelopment. Environ. Res. 2022, 203, 111890. [Google Scholar] [CrossRef]
- López-Moreno, A.; Aguilera, M. Vaginal probiotics for reproductive health and related dysbiosis: Systematic review and meta-analysis. J. Clin. Med. 2021, 10, 1461. [Google Scholar] [CrossRef]
- López-Moreno, A.; Torres-Sánchez, A.; Acuña, I.; Suárez, A.; Aguilera, M. Representative Bacillus sp. AM1 from gut microbiota harbor versatile molecular pathways for Bisphenol A biodegradation. Int. J. Mol. Sci. 2021, 22, 4952. [Google Scholar] [CrossRef]
- Ramírez, V.; Gálvez-Ontiveros, Y.; Porras-Quesada, P.; Martinez-Gonzalez, L.J.; Rivas, A.; Álvarez-Cubero, M.J. Metabolic pathways, alterations in miRNAs expression and effects of genetic polymorphisms of bisphenol a analogues: A systematic review. Environ. Res. 2021, 197, 111062. [Google Scholar] [CrossRef]
- Torres-Sánchez, A.; Pardo-Cacho, J.; López-Moreno, A.; Ruiz-Moreno, Á.; Cerk, K.; Aguilera, M. Antimicrobial effects of potential probiotics of Bacillus spp. isolated from human microbiota: In vitro and in silico methods. Microorganisms 2021, 9, 1615. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, M.; Gálvez-Ontiveros, Y.; Rivas, A. Endobolome, a new concept for determining the influence of microbiota disrupting chemicals (MDC) in relation to specific endocrine pathogenesis. Front. Microbiol. 2020, 11, 578007. [Google Scholar] [CrossRef]
- Gálvez-Ontiveros, Y.; Páez, S.; Monteagudo, C.; Rivas, A. Endocrine disruptors in food: Impact on gut microbiota and metabolic diseases. Nutrients 2020, 12, 1158. [Google Scholar] [CrossRef]
- Ortiz, P.; Torres-Sánchez, A.; López-Moreno, A.; Cerk, K.; Ruiz-Moreno, Á.; Monteoliva-Sánchez, M.; Ampatzoglou, A.; Aguilera, M.; Gruszecka-Kosowska, A. Impact of cumulative environmental and dietary xenobiotics on human microbiota: Risk assessment for One Health. J. Xenobiot. 2022, 12, 56–63. [Google Scholar] [CrossRef]
- Abdelsalam, N.A.; Ramadan, A.T.; ElRakaiby, M.T.; Aziz, R.K. Toxicomicrobiomics: The human microbiome vs. pharmaceutical, dietary, and environmental xenobiotics. Front. Pharmacol. 2020, 11, 390. [Google Scholar] [CrossRef]
- David, A.; Chaker, J.; Price, E.J.; Bessonneau, V.; Chetwynd, A.J.; Vitale, C.M.; Klánová, J.; Walker, D.I.; Antignac, J.P.; Barouki, R.; et al. Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. Environ. Int. 2021, 156, 106630. [Google Scholar] [CrossRef]
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.W.; Jones, D.P. The nature of nurture: Refining the definition of the exposome. Toxicol. Sci. 2014, 137, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Domínguez, R.; Jáuregui, O.; Queipo-Ortuño, M.I.; Andrés-Lacueva, C. Characterization of the human exposome by a comprehensive and quantitative large-scale multianalyte metabolomics platform. Anal. Chem. 2020, 92, 13767–13775. [Google Scholar] [CrossRef] [PubMed]
- Pero-Gascon, R.; Hemeryck, L.Y.; Poma, G.; Falony, G.; Nawrot, T.S.; Raes, J.; Vanhaecke, L.; De Boevre, M.; Covaci, A.; De Saeger, S. FLEXiGUT: Rationale for exposomics associations with chronic low-grade gut inflammation. Environ. Int. 2022, 158, 106906. [Google Scholar] [CrossRef] [PubMed]
- Drakvik, E.; Altenburger, R.; Aoki, Y.; Backhaus, T.; Bahadori, T.; Barouki, R.; Brack, W.; Cronin, M.T.D.; Demeneix, B.; Hougaard Bennekou, S.; et al. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 2020, 134, 105267. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, S.P.; Iqbal, H.M.N.; Tong, Y.W. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environ. Res. 2022, 211, 113102. [Google Scholar] [CrossRef] [PubMed]
- Escher, S.E.; Partosch, F.; Konzok, S.; Jennings, P.; Luijten, M.; Kienhuis, A.; de Leeuw, V.; Reuss, R.; Lindemann, K.-M.; Bennekou, S.H. Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J. 2021, 19, 7033. [Google Scholar] [CrossRef]
- EFSA. Development of a roadmap for action on new approach methodologies in risk assessment. EFSA J. 2022, 19, 7341E. [Google Scholar] [CrossRef]
- EFSA. EFSA Scientific Colloquium 24—’Omics in risk assessment: State of the art and next steps. EFSA Support. Publ. 2018, 15, 1512E. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xia, P.; Wang, P.; Yang, J.; Baird, D.J. Omics advances in ecotoxicology. Environ. Sci. Technol. 2018, 52, 3842–3851. [Google Scholar] [CrossRef]
- Ebner, J.N. Trends in the application of ‘‘Omics’’ to ecotoxicology and stress ecology. Genes 2021, 12, 1481. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Sandhu, O.S.; Brar, N.S.; Kumar, V.; Malhi, G.S.; Kesh, H.; Saini, I. Soil metagenomics: Prospects and challenges. In Mycorrhizal Fungi—Utilisation in Agriculture and Forestry; Radhakrishnan, R., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; de Hollander, M.; Pijl, A.; Liu, B.; Kuramae, E.E. Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer. Microbiome 2020, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.J.; Hwang, S.Y. Multi-omics approaches for understanding environmental exposure and human health. Mol. Cell. Toxicol. 2019, 15, 1–7. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Singh, S.P.; Dubey, N.K.; Chandra, R.; Iqbal, H.M.N. Microbial fingerprinting techniques and their role in the remediation of environmental pollution. Clean. Chem. Eng. 2022, 2, 100026. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Sharma, K. Microbial Biodiversity and bioremediation assessment through omics approaches. Front. Environ. Chem. 2020, 1, 570326. [Google Scholar] [CrossRef]
- Beale, D.J.; Jones, O.A.H.; Bose, U.; Broadbent, J.A.; Walsh, T.K.; van de Kamp, J.; Bissett, A. Omics-based ecosurveillance for the assessment of ecosystem function, health, and resilience. Emerg. Top. Life Sci. 2022, 6, 185–199. [Google Scholar] [CrossRef]
- Khan, A.M.; Ranganathan, S.; Suravajhala, P. Editorial: Bioinformatics and the translation of data-driven discoveries. Front. Genet. 2022, 13, 902940. [Google Scholar] [CrossRef]
- Misra, B.B.; Langefeld, C.D.; Olivier, M.; Cox, L.A. Integrated Omics: Tools, advances, and future approaches. J. Mol. Endocrinol. 2018, 62, R21–R45. [Google Scholar] [CrossRef] [Green Version]
- Krassowski, M.; Das, V.; Sahu, S.K.; Misra, B.B. State of the field in Multi-Omics Research: From computational needs to data mining and sharing. Front. Genet. 2020, 11, 610798. [Google Scholar] [CrossRef]
- Bahamonde, P.A.; Feswick, A.; Isaacs, M.A.; Munkittrick, K.R.; Martyniuk, C.J. Defining the role of omics in assessing ecosystem health: Perspectives from the Canadian environmental monitoring program. Environ. Toxicol. Chem. 2016, 35, 20–35. [Google Scholar] [CrossRef]
- Riesco, R.; Ortúzar, M.; Fernández-Ábalos, J.M.; Trujillo, M.E. Deciphering Genomes: Genetic signatures of plant-associated micromonospora. Front. Plant Sci. 2022, 13, 872356. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform. 2018, 19, 286–302. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.; Okada, D.; Wang, J.; Basak, T.; Koyama, S. Interpretation of omics data analyses. J. Hum. Genet. 2021, 66, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Koppad, S.B.A.; Gkoutos, G.V.; Acharjee, A. Cloud computing enabled big multi-omics data analytics. Bioinform. Biol. Insights 2021, 15, 11779322211035921. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszecka-Kosowska, A.; Ampatzoglou, A.; Aguilera, M. Integration of Omics Approaches Enhances the Impact of Scientific Research in Environmental Applications. Int. J. Environ. Res. Public Health 2022, 19, 8758. https://doi.org/10.3390/ijerph19148758
Gruszecka-Kosowska A, Ampatzoglou A, Aguilera M. Integration of Omics Approaches Enhances the Impact of Scientific Research in Environmental Applications. International Journal of Environmental Research and Public Health. 2022; 19(14):8758. https://doi.org/10.3390/ijerph19148758
Chicago/Turabian StyleGruszecka-Kosowska, Agnieszka, Antonis Ampatzoglou, and Margarita Aguilera. 2022. "Integration of Omics Approaches Enhances the Impact of Scientific Research in Environmental Applications" International Journal of Environmental Research and Public Health 19, no. 14: 8758. https://doi.org/10.3390/ijerph19148758
APA StyleGruszecka-Kosowska, A., Ampatzoglou, A., & Aguilera, M. (2022). Integration of Omics Approaches Enhances the Impact of Scientific Research in Environmental Applications. International Journal of Environmental Research and Public Health, 19(14), 8758. https://doi.org/10.3390/ijerph19148758