Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021
Abstract
:Highlights
- 5321 articles are examined to study the literature on remdesivir research for the last six years.
- We use Scopus database to collect bibliographic material and provide a range of bibliometric indicators including the number of citations, publications, and authors.
- The analysis shows the highest influential articles and the most productive authors and their collaboration networks.
- The analysis shows which countries and institutions are leading research and the largest publishers.
- Co-word analysis was used to make a more comprehensive analysis of the development of the remdesivir research.
Abstract
1. Introduction
2. Materials and Methods
2.1. Database and Search Approach
2.2. Bibliometric Methodology and Statistical Data Analysis
3. Result
3.1. Spatial Distribution of Publication Information
3.2. Most Local Citations and Sources’ Local Impact
3.3. Most Local and Global Cited Documents
3.4. Word Cloud of the Most Frequent Keywords Plus
3.5. Co-Occurrence-Network Analysis Using Keywords and Keywords Plus
3.6. Dissemination of Author Keywords
3.7. Dissemination of Keywords Plus
3.8. Academic Collaboration
3.9. Most Frequently Cited Countries and Country’ Collaborations
3.10. Most Relevant Affiliations and Institutional Collaborations
4. Discussion
Synopsis of Evidence
5. Policy Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(COVID-2019)-and-the-virus-that-causes-it (accessed on 3 May 2022).
- Ebenezer, O.; Jordaan, M.; Ogunsakin, R.; Shapi, M. Potential SARS-CoV preclinical (in vivo) compounds targeting COVID-19 main protease: A meta-analysis and molecular docking studies. Hippokratia 2020, 24, 99. [Google Scholar]
- Jordaan, M.A.; Ebenezer, O.; Damoyi, N.; Shapi, M. Virtual screening, molecular docking studies and DFT calculations of FDA approved compounds similar to the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz. Heliyon 2020, 6, e04642. [Google Scholar] [CrossRef]
- Scudellari, M. How the pandemic might play out in 2021 and beyond. Nature 2020, 584, 22–25. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, S.; Zheng, F.; Dai, Y. Controversial treatments: An updated understanding of the coronavirus disease 2019. J. Med. Virol. 2020, 92, 1441–1448. [Google Scholar] [CrossRef] [Green Version]
- Musa, A.; Pendi, K.; Hashemi, A.; Warbasse, E.; Kouyoumjian, S.; Yousif, J.; Blodget, E.; Stevens, S.; Aly, B.; Baron, D.A. Remdesivir for the Treatment of COVID-19: A Systematic Review of the Literature. West. J. Emerg. Med. 2020, 21, 737. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.Z. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends 2020, 14, 69–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food & Drug. FDA News Release: FDA Approves First Treatment for COVID-19. 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19 (accessed on 3 May 2022).
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schafer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Gammeltoft, K.A.; Zhou, Y.Y.; Hernandez, C.R.D.; Galli, A.; Offersgaard, A.; Costa, R.; Pham, L.V.; Fahnoe, U.; Feng, S.; Scheel, T.K.H.; et al. Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for Treatment of SARS-CoV-2 In Vitro. Antimicrobial. Agents Chemother. 2021, 65, e0268020. [Google Scholar] [CrossRef] [PubMed]
- Jockusch, S.; Tao, C.J.; Li, X.X.; Chien, M.C.; Kumar, S.; Morozova, I.; Kalachikov, S.; Russo, J.J.; Ju, J.Y. Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir. Sci. Rep. 2020, 10, 16577. [Google Scholar] [CrossRef] [PubMed]
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.P.; Weidner, J.M.; Gomba, L.; Bannister, R.; Blair, C.; Jordan, R.; Wells, J.; Wetzel, K.; Garza, N.; van Tongeren, S.; et al. Remdesivir (GS-5734) Is Efficacious in Cynomolgus Macaques Infected with Marburg Virus. J. Infect. Dis. 2020, 222, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Kortepeter, M.G.; Dierberg, K.; Shenoy, E.S.; Cieslak, T.J. Marburg virus disease: A summary for clinicians. Int. J. Infect. Dis. 2020, 99, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Cross, R.W.; Bornholdt, Z.A.; Prasad, A.N.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Abelson, D.M.; Kim, D.; Shestowsky, W.S.; Campbell, L.A.; et al. Combination therapy protects macaques against advanced Marburg virus disease. Nat. Commun. 2021, 12, 1891. [Google Scholar] [CrossRef]
- Al-Abdouh, A.; Bizanti, A.; Barbarawi, M.; Jabri, A.; Kumar, A.; Fashanu, O.E.; Khan, S.U.; Zhao, D.; Antar, A.A.R.; Michos, E.D. Remdesivir for the treatment of COVID-19: A systematic review and meta-analysis of randomized controlled trials. Contemp. Clin. Trials 2021, 101, 106272. [Google Scholar] [CrossRef]
- Okoli, G.N.; Rabbani, R.; Copstein, L.; Al-Juboori, A.; Askin, N.; Abou-Setta, A.M. Remdesivir for coronavirus disease 2019 (COVID-19): A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Infect. Dis. 2021, 53, 691–699. [Google Scholar] [CrossRef]
- Gebrie, D.; Getnet, D.; Manyazewal, T. Efficacy of remdesivir in patients with COVID-19: A protocol for systematic review and meta-analysis of randomised controlled trials. BMJ Open 2020, 10, e039159. [Google Scholar] [CrossRef]
- Song, Y.; Chen, X.; Hao, T.; Liu, Z.; Lan, Z. Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput. Educ. 2019, 137, 12–31. [Google Scholar] [CrossRef]
- Arici, F.; Yildirim, P.; Caliklar, Ş.; Yilmaz, R.M. Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Comput. Educ. 2019, 142, 103647. [Google Scholar] [CrossRef]
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Ogunsakin, R.E.; Ebenezer, O.; Ginindza, T.G. A Bibliometric Analysis of the Literature on Norovirus Disease from 1991–2021. Int. J. Environ. Res. Public Health 2022, 19, 2508. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. Sage Open 2019, 9, 2158244019829575. [Google Scholar] [CrossRef] [Green Version]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the treatment of COVID-19—Final report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; et al. Compassionate use of remdesivir for patients with severe COVID-19. N. Engl. J. Med. 2020, 382, 2327–2336. [Google Scholar] [CrossRef]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Fagot Gandet, F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef]
- Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020, 220, 1–13. [Google Scholar] [CrossRef]
- Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N. Engl. J. Med. 2020, 382, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017, 9, eaal3653. [Google Scholar] [CrossRef] [Green Version]
- Warren, T.K.; Kane, C.D.; Wells, J.; Stuthman, K.S.; van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Steffens, J.; Gomba, L.; Weidner, J.M.; et al. Remdesivir is efficacious in rhesus monkeys exposed to aerosolized Ebola virus. Sci. Rep. 2021, 11, 19458. [Google Scholar] [CrossRef]
- Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018, 9, e00221-18. [Google Scholar] [CrossRef] [Green Version]
- Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr.; Mbaya, O.T.; Proschan, M.; Mukadi, D.; Manzo, M.L.; Nzolo, D.; Oloma, A.T.; Ibanda, A.; et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020, 368, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Peto, R.; Henao-Restrepo, A.M.; Preziosi, M.P.; Sathiyamoorthy, V.; Karim, Q.A.; Alejandria, M.M.; García, C.H.; Kieny, M.P.; Malekzadeh, R.; et al. Repurposed antiviral drugs for COVID-19—InteriM WHO solidarity trial results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar]
- Lescure, F.X.; Bouadma, L.; Nguyen, D.; Parisey, M.; Wicky, P.H.; Behillil, S.; Gaymard, A.; Bouscambert-Duchamp, M.; Donati, F.; Le Hingrat, Q.; et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect. Dis. 2020, 20, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.Y.; Nahass, R.G.; et al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef]
- De Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA 2020, 117, 6771–6776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis. 2020, 221, 1762–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Dashraath, P.; Wong, J.L.J.; Lim, M.X.K.; Lim, L.M.; Li, S.; Biswas, A.; Choolani, M.; Mattar, C.; Su, L.L. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am. J. Obstet. Gynecol. 2020, 222, 521–531. [Google Scholar] [CrossRef]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients with Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef]
- Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020, 368, 1499–1504. [Google Scholar] [CrossRef]
- Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 2019, 11, 326. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.J.; Won, J.J.; Graham, R.L.; Dinnon, K.H., III; Sims, A.C.; Feng, J.Y.; Cihlar, T.; Denison, M.R.; Baric, R.S.; Sheahan, T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res. 2019, 169, 104541. [Google Scholar] [CrossRef]
- Pruijssers, A.J.; George, A.S.; Schäfer, A.; Leist, S.R.; Gralinksi, L.E.; Dinnon, K.H., III; Yount, B.L.; Agostini, M.L.; Stevens, L.J.; Chappell, J.D.; et al. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 2020, 32, 107940. [Google Scholar] [CrossRef]
- Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020, 178, 104786. [Google Scholar] [CrossRef] [PubMed]
- Charlotte, P.; Gaël, G.; Huu, T.H.P.P.; Marine, B.; Guillaume, C.; Hatem, K.; Véronique, E.; Christian, C.; Daniel, H.; Govind, S. Characteristics, comorbidities, 30-day outcome and in-hospital mortality of patients hospitalised with COVID-19 in a Swiss area —A retrospective cohort study. Swiss Med. Wkly 2020, 150, w20314. [Google Scholar]
- Abdelmajid, A.; Osman, W.; Musa, H.; Elhiday, H.; Munir, W.; Maslamani, M.A.A.; Elmekaty, E.Z. Remdesivir therapy causing bradycardia in COVID-19 patients: Two case reports. IDCases 2021, 26, e01254. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, S.; Bheemireddy, S.; Srinivasan, N. Repurposing drugs against the main protease of SARS-CoV-2: Mechanism-based insights supported by available laboratory and clinical data. Mol. Omics 2020, 16, 474–491. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Mahtarin, R.; Islam, M.S.; Das, S.; Al Mamun, A.; Ahmed, S.S.; Ali, M.A. Remdesivir analogs against SARS-CoV-2 RNA-dependent RNA polymerase. J. Biomol. Struct. Dyn. 2021, 27, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-L.; Ding, G.; Feng, N.; Wang, M.-H.; Ho, Y.-S. Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics 2009, 80, 39–58. [Google Scholar] [CrossRef]
- Garfield, E. KeyWords Plus-ISI’s breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Curr. Cont. 1990, 32, 5–9. [Google Scholar]
- Hermine, O.; Mariette, X.; Tharaux, P.-L.; Resche-Rigon, M.; Porcher, R.; Ravaud, P.; Bureau, S.; Dougados, M.; Tibi, A.; Azoulay, E. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: A randomized clinical trial. JAMA Intern. Med. 2021, 181, 32–40. [Google Scholar] [CrossRef]
- Huang, E.; Isonaka, S.; Yang, H.; Salce, E.; Rosales, E.; Jordan, S.C. Tocilizumab treatment in critically ill patients with COVID-19: A retrospective observational study. Int. J. Infect. Dis. 2021, 105, 245–251. [Google Scholar] [CrossRef]
- Ignatius, E.H.; Wang, K.; Karaba, A.; Robinson, M.; Avery, R.K.; Blair, P.; Chida, N.; Jain, T.; Petty, B.G.; Siddiqui, Z.; et al. Tocilizumab for the Treatment of COVID-19 among Hospitalized Patients: A Matched Retrospective Cohort Analysis. Open Forum Infect. Dis. 2021, 8, ofaa598. [Google Scholar] [CrossRef]
- Sarhan, R.M.; Harb, H.S.; Abou Warda, A.E.; Salem-Bekhit, M.M.; Shakeel, F.; Alzahrani, S.A.; Madney, Y.M.; Boshra, M.S. Efficacy of the early treatment with tocilizumab-hydroxychloroquine and tocilizumab-remdesivir in severe COVID-19 Patients. J. Infect. Public Health 2021, 15, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Jamieson, L.; Edoka, I.; Long, L.; Silal, S.; Pulliam, J.R.C.; Moultrie, H.; Sanne, I.; Meyer-Rath, G.; Nichols, B.E. Cost-effectiveness of Remdesivir and Dexamethasone for COVID-19 Treatment in South Africa. Open Forum Infect. Dis. 2021, 8, ofab040. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Semler, M.W.; Leither, L.M.; Casey, J.D.; Angus, D.C.; Brower, R.G.; Chang, S.Y.; Collins, S.P.; Eppensteiner, J.C.; Filbin, M.R. Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID-19: A randomized clinical trial. JAMA 2020, 324, 2165–2176. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020, 6, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garibaldi, B.T.; Wang, K.; Robinson, M.L.; Zeger, S.L.; Bandeen-Roche, K.; Wang, M.C.; Alexander, G.C.; Gupta, A.; Bollinger, R.; Xu, Y. Comparison of Time to Clinical Improvement with vs without Remdesivir Treatment in Hospitalized Patients with COVID-19. JAMA Netw. Open 2021, 4, e213071. [Google Scholar] [CrossRef] [PubMed]
- Ansems, K.; Grundeis, F.; Dahms, K.; Mikolajewska, A.; Thieme, V.; Piechotta, V.; Metzendorf, M.I.; Stegemann, M.; Benstoem, C.; Fichtner, F. Remdesivir for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 8, CD014962. [Google Scholar]
- Shi, Y.; Shuai, L.; Wen, Z.; Wang, C.; Yan, Y.; Jiao, Z.; Guo, F.; Fu, Z.F.; Chen, H.; Bu, Z.; et al. The preclinical inhibitor GS441524 in combination with GC376 efficaciously inhibited the proliferation of SARS-CoV-2 in the mouse respiratory tract. Emerg. Microbes Infect. 2021, 10, 481–492. [Google Scholar] [CrossRef]
- Tan, Y.L.; Tan, K.S.W.; Chu, J.J.H.; Chow, V.T. Combination Treatment with Remdesivir and Ivermectin Exerts Highly Synergistic and Potent Antiviral Activity Against Murine Coronavirus Infection. Front. Cell. Infect. Microbiol. 2021, 11, 700502. [Google Scholar] [CrossRef]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Deshpande, R.R.; Tiwari, A.P.; Nyayanit, N.; Modak, M. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Eur. J. Pharmacol. 2020, 886, 173430. [Google Scholar] [CrossRef]
- Shah, B.; Modi, P.; Sagar, S.R. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci. 2020, 252, 117652. [Google Scholar] [CrossRef]
- Adeoye, A.O.; Oso, B.J.; Olaoye, I.F.; Tijjani, H.; Adebayo, A.I. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. J. Biomol. Struct. Dyn. 2021, 39, 3469–3479. [Google Scholar] [CrossRef]
- Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020, 253, 117592. [Google Scholar] [CrossRef]
- Naik, V.R.; Munikumar, M.; Ramakrishna, U.; Srujana, M.; Goudar, G.; Naresh, P.; Kumar, B.N.; Hemalatha, R. Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease—In silico approach. J. Biomol. Struct. Dyn. 2021, 39, 4701–4714. [Google Scholar] [CrossRef]
- Falagas, M.E.; Papastamataki, P.A.; Bliziotis, I.A. A bibliometric analysis of research productivity in Parasitology by different world regions during a 9-year period (1995–2003). BMC Infect. Dis. 2006, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Garg, K.C.; Rao, M. Bibliometric analysis of scientific productivity: A case study of an Indian physics laboratory. Scientometrics 1988, 13, 261–269. [Google Scholar] [CrossRef]
- Capobianco-Uriarte, M.; Casado-Belmonte, P.; Marín-Carrillo, G.M.; Terán-Yépez, E. A bibliometric analysis of international competitiveness (1983–2017). Sustainability 2019, 11, 1877. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
Type of Document | Frequency (n) | % |
---|---|---|
Article | 2440 | 45.86 |
Review | 1566 | 29.43 |
Letter | 438 | 8.23 |
Editorial | 252 | 4.74 |
Note | 251 | 4.72 |
Short survey | 46 | 0.86 |
Book chapter | 31 | 0.58 |
Erratum | 15 | 0.28 |
Conference paper | 14 | 0.26 |
Data paper | 1 | 0.02 |
Retracted | 2 | 0.04 |
Trade journal | 3 | 0.06 |
Non-English article | 80 | 1.50 |
Irrelevant documents | 182 | 3.42 |
Journal | Greatest Local Source Impact | Most Local Citations | Articles | |||
---|---|---|---|---|---|---|
h_Index | g_Index | m_Index | TC | |||
New England Journal of Medicine | 13 | 14 | 3.30 | 10,997 | New England Journal of Medicine | 3833 |
American Journal of Transplantation | 12 | 22 | 6 | 856 | Lancet | 2679 |
Journal of Biomolecular Structure and Dynamics | 11 | 26 | 5.5 | 704 | The Journal of the American Medical Association | 1978 |
Clinical Infectious Diseases | 10 | 14 | 5 | 609 | Nature | 1658 |
European Journal of Pharmacology | 10 | 17 | 5 | 318 | Journal of Virology | 1107 |
PLoS ONE | 10 | 14 | 5 | 217 | Science | 997 |
Nature | 9 | 9 | 1.5 | 1681 | Clinical Infectious Disease | 839 |
Antimicrobial Agents and Chemotherapy | 8 | 15 | 4 | 396 | Cell | 821 |
Antiviral Research | 8 | 18 | 2.6 | 950 | Journal of Medical Virology | 764 |
Frontiers in Pharmacology | 8 | 11 | 4 | 132 | BMJ | 614 |
International Journal of Infectious Diseases | 8 | 15 | 4 | 240 | Lancet Infectious Disease | 610 |
Journal of Clinical Medicine | 8 | 18 | 4 | 367 | Antiviral Research | 607 |
Journal of Medical Virology | 8 | 14 | 4 | 215 | Antimicrobial Agents and Chemotherapy | 596 |
Open Forum Infectious Diseases | 8 | 10 | 4 | 131 | Lancet Respiratory Medicine | 535 |
International Journal of Antimicrobial Agents | 7 | 9 | 3.5 | 1579 | Nature Communications | 534 |
Science | 7 | 8 | 3.5 | 1311 | Cell Research | 521 |
Viruses | 7 | 20 | 2.3 | 455 | Viruses | 485 |
Clinical Microbiology and Infection | 6 | 9 | 3 | 293 | Proceedings of the National Academy of Sciences of the United States of America | 482 |
EClinicalMedicine | 6 | 6 | 3 | 300 | Journal of Biological Chemistry | 473 |
European Review for Medical and Pharmacological Sciences | 6 | 10 | 3 | 187 | Journal of Medicinal Chemistry | 458 |
Documents | DOI | Total Citations | TC per Year | Normalized TC |
---|---|---|---|---|
Holshue ML [27], 2020, N Engl J Med | 10.1056/NEJMoa2001191 | 2997 | 1498.5 | 61.7045 |
Beigel JH [28], 2020, N Engl J Med | 10.1056/NEJMoa2007764 | 2458 | 1229 | 50.6072 |
Wang Y [29], 2020, Lancet | 10.1016/S0140-6736(20)31022-9 | 1575 | 787.5 | 32.4273 |
Grein J [30], 2020, N Engl J Med | 10.1056/NEJMoa2007016 | 1420 | 710 | 29.236 |
Helms J [31], 2020, Intensive Care Med | 10.1007/s00134-020-06062-x | 1171 | 585.5 | 24.1094 |
Magro C [32], 2020, Transl Res | 10.1016/j.trsl.2020.04.007 | 1025 | 512.5 | 21.1035 |
Geleris J [33], 2020, N Engl J Med | 10.1056/NEJMoa2012410 | 918 | 459 | 18.9005 |
Wu C [34], 2020, Acta Pharm Sin B | 10.1016/j.apsb.2020.02.008 | 905 | 452.5 | 18.6328 |
Sheahan TP [35], 2017, Sci Transl Med | 10.1126/scitranslmed.aal3653 | 833 | 166.6 | 2.8314 |
Warren TK [36], 2016, Nature | 10.1038/nature17180 | 742 | 123.67 | 3.5502 |
Agostini ML [37], 2018, mBio | 10.1128/mBio.00221-18 | 736 | 184 | 4.1488 |
Mulangu S [38], 2019, N Engl J Med | 10.1056/NEJMoa1910993 | 690 | 230 | 4.3671 |
Gao Y [39], 2020, Sci | 10.1126/science.abb7498 | 592 | 296 | 12.1885 |
Pan H [40], 2021, N Engl J Med | 10.1056/NEJMoa2023184 | 587 | 587 | 98.2945 |
Lescure FX [41], 2020, Lancet Infect Dis | 10.1016/S1473-3099(20)30200-0 | 564 | 282 | 11.6121 |
Goldman JD [42], 2020, N Engl J Med | 10.1056/NEJMoa2015301 | 545 | 272.5 | 11.2209 |
de Wit E [43], 2020, Proc Natl Acad Sci USA | 10.1073/pnas.1922083117 | 485 | 242.5 | 9.9855 |
Wang F [44], 2020, J Infect Dis | 10.1093/INFDIS/JIAA150 | 476 | 238 | 9.8002 |
del Valle DM [45], 2020, Nat Med | 10.1038/s41591-020-1051-9 | 450 | 225.00 | 9.2649 |
Dashraath P [46], 2020, Am J Obstet Gynecol | 10.1016/j.ajog.2020.03.021 | 448 | 224.00 | 9.2238 |
Documents | DOI | Year | Local Citations | Global Citations | LC/GC Ratio (%) |
---|---|---|---|---|---|
Berlin DA [47], 2020, N Engl J Med | 10.1056/NEJMcp2009575 | 2020 | 940 | 398 | 236.18 |
Wang Y [29], 2020, Lancet | 10.1016/S0140-6736(20)31022-9 | 2020 | 274 | 1575 | 17.40 |
Grein J [30], 2020, N Engl J Med | 10.1056/NEJMoa2007016 | 2020 | 239 | 1420 | 16.83 |
Sheahan TP [35], 2017, Sci Transl Med | 10.1126/scitranslmed.aal3653 | 2017 | 193 | 833 | 23.17 |
Warren TK [36], 2016, Nature | 10.1038/nature17180 | 2016 | 178 | 742 | 23.99 |
Agostini ML [37], 2018, mBio | 10.1128/mBio.00221-18 | 2018 | 160 | 736 | 21.74 |
Holshue ML [27], 2020, N Engl J Med | 10.1056/NEJMoa2001191 | 2020 | 147 | 2997 | 4.90 |
Goldman JD [42], 2020, N Engl J Med | 10.1056/NEJMoa2015301 | 2020 | 123 | 545 | 22.57 |
Mulangu S [38], 2019, N ENGL J MED | 10.1056/NEJMoa1910993 | 2019 | 121 | 690 | 17.54 |
de Wit E [43], 2020, Proc Natl Acad Sci USA | 10.1073/pnas.1922083117 | 2020 | 104 | 485 | 21.44 |
Spinner CD [48], 2020, JAMA | 10.1001/jama.2020.16349 | 2020 | 94 | 409 | 22.98 |
Gao Y [39], 2020, Sci | 10.1126/science.abb7498 | 2020 | 91 | 592 | 15.37 |
Yin W [49], 2020, Sci | 10.1126/science.abc1560 | 2020 | 89 | 444 | 20.05 |
Geleris J [33], 2020, N Engl J Med | 10.1056/NEJMoa2012410 | 2020 | 84 | 918 | 9.15 |
Wu C [34], 2020, Acta Pharm Sin B | 10.1016/j.apsb.2020.02.008 | 2020 | 77 | 905 | 8.51 |
Tchesnokov EP [50], 2019, Viruses | 10.3390/v11040326 | 2019 | 76 | 299 | 25.42 |
Brown AJ [51], 2019, Antiviral Res | 10.1016/j.antiviral.2019.104541 | 2019 | 75 | 230 | 32.61 |
Pruijssers AJ [52], 2020, Cell Rep | 10.1016/j.celrep.2020.107940 | 2020 | 70 | 162 | 43.21 |
Choy KT [53], 2020, Antiviral Res | 10.1016/j.antiviral.2020.104786 | 2020 | 69 | 417 | 16.55 |
Williamson BN, 2020, Nature | 10.1038/s41586-020-2423-5 | 2020 | 65 | 231 | 28.14 |
Country | Total Citations | Average Article Citations |
---|---|---|
USA | 26,602 | 39.82 |
China | 7230 | 50.92 |
France | 3047 | 50.78 |
India | 2425 | 8.48 |
Italy | 2103 | 14.91 |
United Kingdom | 1383 | 26.6 |
Hong Kong | 1278 | 75.18 |
Spain | 1269 | 16.48 |
Canada | 973 | 27.03 |
Switzerland | 784 | 56 |
Germany | 750 | 13.64 |
Egypt | 575 | 19.17 |
Saudi Arabia | 511 | 17.62 |
Singapore | 472 | 67.43 |
Iran | 373 | 6.11 |
Colombia | 359 | 119.67 |
Korea | 358 | 7.96 |
Pakistan | 356 | 16.18 |
Australia | 256 | 14.22 |
Denmark | 233 | 14.56 |
Affiliations | Articles |
---|---|
Icahn School of Medicine at Mount Sinai | 103 |
Harvard Medical School | 81 |
University of California | 67 |
University of Michigan | 53 |
University of Washington | 49 |
All India Institute of Medical Sciences | 47 |
Mayo Clinic | 44 |
University of Milan | 41 |
Shahid Beheshti University of Medical Sciences | 38 |
Johns Hopkins University | 35 |
Tehran University of Medical Sciences | 35 |
Albert Einstein College of Medicine | 34 |
Columbia University Irving Medical Center | 33 |
The University of Hong Kong | 33 |
Gilead Sciences | 32 |
Massachusetts General Hospital | 32 |
University of Utah | 31 |
Columbia University | 30 |
Wroclaw Medical University | 30 |
Huazhong University of Science and Technology | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunsakin, R.E.; Ebenezer, O.; Jordaan, M.A.; Shapi, M.; Ginindza, T.G. Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021. Int. J. Environ. Res. Public Health 2022, 19, 8845. https://doi.org/10.3390/ijerph19148845
Ogunsakin RE, Ebenezer O, Jordaan MA, Shapi M, Ginindza TG. Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021. International Journal of Environmental Research and Public Health. 2022; 19(14):8845. https://doi.org/10.3390/ijerph19148845
Chicago/Turabian StyleOgunsakin, Ropo E., Oluwakemi Ebenezer, Maryam A. Jordaan, Michael Shapi, and Themba G. Ginindza. 2022. "Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021" International Journal of Environmental Research and Public Health 19, no. 14: 8845. https://doi.org/10.3390/ijerph19148845
APA StyleOgunsakin, R. E., Ebenezer, O., Jordaan, M. A., Shapi, M., & Ginindza, T. G. (2022). Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021. International Journal of Environmental Research and Public Health, 19(14), 8845. https://doi.org/10.3390/ijerph19148845