A Comparative Study of the Resilience of Urban and Rural Areas under Climate Change
Abstract
:1. Introduction
2. Methodology
2.1. Research Framework
2.2. The Research Area and the Identification of Urban and Rural Spatial Units
2.3. A Comparative Approach to Urban–Rural Resilience Differences
2.3.1. Principal Component Analysis (PCA)
2.3.2. Local Indicators of Spatial Association (LISA)
2.3.3. Binary Logistic Regression
3. Results Analysis
3.1. The Construction of the Indicator System and Principal Component Analysis
- (1)
- Principal component 1: Greenland resilience
- (2)
- Principal component 2: Community age structure resilience
- (3)
- Principal component 3: Traditional knowledge resilience
- (4)
- Principal component 4: Infrastructure resilience
- (5)
- Principal component 5: Residents economic independence resilience
3.2. Spatial Autocorrelation Analysis of the Indicators of Resilience
3.3. Analysis of the Difference between Urban and Rural Resilience
- (1)
- Infrastructure resilience
- (2)
- Community age structure resilience
- (3)
- Greenland resilience
- (4)
- Residents economic independence resilience
- (5)
- Traditional knowledge resilience
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Q. Long-term flood risk assessment of watersheds under climate change based on the game cross-efficiency DEA. Nat. Hazards 2020, 104, 2213–2237. [Google Scholar] [CrossRef]
- Newman, P. Cool planning: How urban planning can mainstream responses to climate change. Cities 2020, 103, 102651. [Google Scholar] [CrossRef]
- Kumar, N.; Poonia, V.; Gupta, B.; Goyal, M.K. A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technol. Forecast. Soc. Chang. 2021, 165, 120532. [Google Scholar] [CrossRef]
- Ramalho, J. Engendering disaster risk management and resilience-building: The significance of the everyday in evaluations of the exceptional. Int. J. Disaster Risk Reduct. 2020, 50, 101830. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Yoon, D.; Kang, J.E.; Brody, S.D. A measurement of community disaster resilience in Korea. J. Environ. Plan. Manag. 2016, 59, 436–460. [Google Scholar] [CrossRef]
- Engle, N.L. Adaptive capacity and its assessment. Glob. Environ. Chang. 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Hudec, O.; Reggiani, A.; Šiserová, M. Resilience capacity and vulnerability: A joint analysis with reference to Slovak urban districts. Cities 2018, 73, 24–35. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. Urban–Rural Differences in Disaster Resilience. Ann. Am. Assoc. Geogr. 2016, 106, 1236–1252. [Google Scholar] [CrossRef]
- Chang, H.-S.; Su, Q.; Katayama, T. Research on establishment of the region flood protection standard-a case of watershed of Dajiaxi, Taiwan. Urban Water J. 2021, 18, 173–182. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang. 2017, 140, 33–45. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Chuang, W.C.; Garmestani, A.; Eason, T.; Spanbauer, T.; Fried-Petersen, H.; Roberts, C.; Sundstrom, S.; Burnett, J.; Angeler, D.; Chaffin, B.; et al. Enhancing quantitative approaches for assessing community resilience. J. Environ. Manag. 2018, 213, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Chang, H.-S.; Su, Q. Exploring the coupling relationship of stormwater runoff distribution in watershed from the perspective of fairness. Urban Clim. 2021, 36, 100792. [Google Scholar] [CrossRef]
- Song, T.; Yang, Z.; Chahine, T. Efficiency evaluation of material and energy flows, a case study of Chinese cities. J. Clean. Prod. 2016, 112, 3667–3675. [Google Scholar] [CrossRef]
- Uddin, M.N.; Islam, A.S.; Bala, S.K.; Islam, G.T.; Adhikary, S.; Saha, D.; Haque, S.; Fahad, M.G.R.; Akter, R. Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis. Appl. Geogr. 2019, 102, 47–57. [Google Scholar] [CrossRef]
- Chang, H.-S.; Su, Q.; Chen, Y.S. Establish an assessment framework for risk and investment under climate change from the perspective of climate justice. Environ. Sci. Pollut. Res. 2021, 28, 66435–66447. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Cheng, C. EcoWisdom for Climate Justice Planning: Social-Ecological Vulnerability Assessment in Boston’s Charles River Watershed. In Ecological Wisdom: Theory and Practice; Yang, B., Young, R.F., Eds.; Springer: Singapore, 2019; pp. 249–265. [Google Scholar]
- Arabameri, A.; Pradhan, B.; Lombardo, L. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. CATENA 2019, 183, 104223. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, Y.; Huang, X.; Shi, R.; Yu, W.; Zhang, T. Exploring the driving forces of farmland loss under rapidurbanization using binary logistic regression and spatial regression: A case study of Shanghai and Hangzhou Bay. Ecol. Indic. 2018, 95, 455–467. [Google Scholar] [CrossRef]
- Rad, M.H.; Mojtahedi, M.; Ostwald, M. The Integration of Lean and Resilience Paradigms: A Systematic Review Identifying Current and Future Research Directions. Sustainability 2021, 13, 8893. [Google Scholar]
- Barua, A.; Katyaini, S.; Mili, B.; Gooch, P. Climate change and poverty: Building resilience of rural mountain communities in South Sikkim, Eastern Himalaya, India. Reg. Environ. Chang. 2014, 14, 267–280. [Google Scholar] [CrossRef]
- Cai, H.; Lam, N.S.; Qiang, Y.; Zou, L.; Correll, R.M.; Mihunov, V. A synthesis of disaster resilience measurement methods and indices. Int. J. Disaster Risk Reduct. 2018, 31, 844–855. [Google Scholar] [CrossRef]
- Cutter, S.L. The landscape of disaster resilience indicators in the USA. Nat. Hazards 2016, 80, 741–758. [Google Scholar] [CrossRef]
- Feldmeyer, D.; Nowak, W.; Jamshed, A.; Birkmann, J. An open resilience index: Crowdsourced indicators empirically developed from natural hazard and climatic event data. Sci. Total Environ. 2021, 774, 145734. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D. An integrated decision model for managing hospital evacuation in response to an extreme flood event: A case study of the Hawkesbury-Nepean River, NSW, Australia. Saf. Sci. 2022, 155, 105867. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D. A modelling framework to design an evacuation support system for healthcare infrastructures in response to major flood events. Prog. Disaster Sci. 2022, 13, 100218. [Google Scholar] [CrossRef]
- Buys, L.; Miller, E.; van Megen, K. Conceptualising climate change in rural Australia: Community perceptions, attitudes and (in)actions. Reg. Environ. Chang. 2012, 12, 237–248. [Google Scholar] [CrossRef]
- Pearce, T.; Ford, J.; Willox, A.C.; Smit, B. Inuit Traditional Ecological Knowledge (TEK), Subsistence Hunting and Adaptation to Climate Change in the Canadian Arctic. Arctic 2015, 68, 233–245. [Google Scholar] [CrossRef]
- Van Oudenhoven Frederik, J.W.; Mijatović, D.; Eyzaguirre Pablo, B. Social-ecological indicators of resilience in agrarian and natural landscapes. Manag. Environ. Qual. Int. J. 2011, 22, 154–173. [Google Scholar] [CrossRef]
- Bianco, F.; García-Ayllón, S. Coastal resilience potential as an indicator of social and morphological vulnerability to beach management. Estuar. Coast. Shelf Sci. 2021, 253, 107290. [Google Scholar] [CrossRef]
- Tobin, G.A. Sustainability and community resilience: The holy grail of hazards planning? Glob. Environ. Chang. Part B Environ. Hazards 1999, 1, 13–25. [Google Scholar] [CrossRef]
- Mayunga, J. Understanding and applying the concept of community disaster resilience: A capital-based approach. Summer Acad. Soc. Vulnerabil. Resil. Build. 2007, 1, 1–16. [Google Scholar]
- Kong, J.; Zhang, C.; Simonovic, S.P. Optimizing the resilience of interdependent infrastructures to regional natural hazards with combined improvement measures. Reliab. Eng. Syst. Saf. 2021, 210, 107538. [Google Scholar] [CrossRef]
- Sen, M.K.; Dutta, S.; Kabir, G. Development of flood resilience framework for housing infrastructure system: Integration of best-worst method with evidence theory. J. Clean. Prod. 2021, 290, 125197. [Google Scholar] [CrossRef]
- Srivastava, N.; Shaw, R. Occupational resilience to floods across the urban–rural domain in Greater Ahmedabad. India. Int. J. Disaster Risk Reduct. 2015, 12, 81–92. [Google Scholar] [CrossRef]
- Chang, H.-S.; Su, Q. The Response of Taiwan’s Space Disaster Prevention System from the Perspective of Resilient City. Urban Dev. Stud. 2020, 27, 97–105. [Google Scholar]
Orientation | Indicator | Relation | Principal Component | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Society | Aging index | − | 0.156 | 0.482 | 0.046 | 0.235 | −0.069 |
Education level | + | −0.238 | −0.739 * | 0.085 | 0.297 | 0.084 | |
Household size | + | −0.093 | −0.831 * | 0.082 | 0.171 | 0.085 | |
Dependency ratio | − | 0.054 | 0.702 * | −0.007 | −0.031 | 0.033 | |
Population density | − | 0.803 * | 0.111 | 0.001 | −0.105 | −0.122 | |
Disabled population | − | 0.041 | 0.499 | −0.002 | 0.129 | 0.183 | |
Economy | Agricultural land area | + | 0.863 * | 0.09 | −0.157 | 0.012 | 0.124 |
Number of agricultural households | + | −0.007 | −0.152 | −0.047 | −0.131 | 0.19 | |
Residence income | + | −0.099 | 0.099 | −0.036 | 0.616 * | −0.031 | |
Low-income households | − | −0.004 | 0.207 | −0.106 | 0.09 | 0.508 * | |
Infrastructure | Medical facilities | + | −0.161 | −0.018 | −0.078 | 0.577 * | 0.008 |
School | + | −0.526 * | −0.172 | −0.015 | 0.178 | −0.114 | |
Fire station | + | −0.223 | −0.099 | −0.116 | 0.565 * | −0.155 | |
Road density | + | −0.722 * | 0.018 | −0.072 | 0.172 | 0.037 | |
Environment | Impervious area | − | 0.009 | 0.018 | −0.291 | −0.002 | 0.103 |
Green infrastructure | + | 0.157 | −0.088 | 0.127 | 0.556 * | 0.373 | |
Green area | + | −0.09 | 0.093 | −0.469 | 0.232 | −0.183 | |
Disaster threat | Earth−rock flow potential | − | 0.857 * | 0.214 | 0.026 | −0.07 | −0.1 |
Stratum subsidence | − | −0.057 | 0.075 | −0.005 | 0.065 | −0.730 * | |
Landslides | − | 0.886 * | 0.047 | 0.075 | 0.009 | 0.184 | |
Traditional knowledge | Percentage of indigenous population | + | −0.005 | 0.013 | 0.872 * | −0.015 | −0.021 |
Proportion of aboriginal elderly population | + | −0.019 | 0.033 | 0.841 * | 0.018 | −0.034 | |
Eigenvalues | 4.469 | 2.168 | 1.833 | 1.522 | 1.1 | ||
Measures of variation (%) | 20.313 | 9.853 | 8.33 | 6.92 | 5.002 | ||
Cumulative explained variance ratio(%) | 20.313 | 20.166 | 38.495 | 45.416 | 50.418 | ||
Kaiser−Meyer−Olkin (KMO) | 0.767 | ||||||
Bartlett’s sphericity test | Significance: 0.000; degree of freedom: 0.231 |
Resilience Indicator | B | S.E. | Wald | Exp(B) | Significance | Possible Categories That Increase per Unit Volume | |
---|---|---|---|---|---|---|---|
Pc4 | Infrastructure resilience | 1.339 | 0.082 | 264.721 | 3.817 | 0.000 | Urban |
Pc2 | Community age structure resilience | 0.694 | 0.105 | 43.680 | 2.003 | 0.000 | Urban |
Pc1 | Greenland resilience | 0.300 | 0.069 | 18.812 | 1.350 | 0.000 | Urban |
Pc5 | Residents economic independence resilience | −0.398 | 0.088 | 20.386 | 0.671 | 0.000 | Rural |
Pc3 | Traditional knowledge resilience | −0.422 | 0.149 | 7.994 | 0.655 | 0.005 | Rural |
Constant term | 1.065 | 0.101 | 111.010 | 1 | 0.000 | ||
Model sig = 0.000 | Nagelkerke R2 = 0.411 | Hosmer−lemeshow = 0.408 > 0.05 | |||||
Number of samples = 1645 (rural = 512, urban = 1133) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Chang, H.-S.; Pai, S.-E. A Comparative Study of the Resilience of Urban and Rural Areas under Climate Change. Int. J. Environ. Res. Public Health 2022, 19, 8911. https://doi.org/10.3390/ijerph19158911
Su Q, Chang H-S, Pai S-E. A Comparative Study of the Resilience of Urban and Rural Areas under Climate Change. International Journal of Environmental Research and Public Health. 2022; 19(15):8911. https://doi.org/10.3390/ijerph19158911
Chicago/Turabian StyleSu, Qingmu, Hsueh-Sheng Chang, and Shin-En Pai. 2022. "A Comparative Study of the Resilience of Urban and Rural Areas under Climate Change" International Journal of Environmental Research and Public Health 19, no. 15: 8911. https://doi.org/10.3390/ijerph19158911
APA StyleSu, Q., Chang, H. -S., & Pai, S. -E. (2022). A Comparative Study of the Resilience of Urban and Rural Areas under Climate Change. International Journal of Environmental Research and Public Health, 19(15), 8911. https://doi.org/10.3390/ijerph19158911