Effect of Oral Administration of Lactiplantibacillus plantarum SNK12 on Temporary Stress in Adults: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants
2.3. Test Supplements
2.4. Study Design
2.5. Measurement
2.6. Primary Outcome
2.7. Secondary Outcomes
2.8. Safety Endpoints
2.9. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Primary Outcome
3.3. Secondary Outcomes
3.4. Safety Endpoints
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oligschlaeger, Y.; Yadati, T.; Houben, T.; Condello Oliván, C.M.; Shiri-Sverdlov, R. Inflammatory Bowel Disease: A Stressed “Gut/Feeling”. Cells 2019, 8, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilchmann-Diounou, H.; Menard, S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front. Immunol. 2020, 11, 1823. [Google Scholar] [CrossRef] [PubMed]
- Barreau, F.; Ferrier, L.; Fioramonti, J.; Bueno, L. Neonatal Maternal Deprivation Triggers Long Term Alterations in Colonic Epithelial Barrier and Mucosal Immunity in Rats. Gut 2004, 53, 501–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morera, L.P.; Marchiori, G.N.; Medrano, L.A.; Defagó, M.D. Stress, Dietary Patterns and Cardiovascular Disease: A Mini-Review. Front. Neurosci. 2019, 13, 1226. [Google Scholar] [CrossRef] [Green Version]
- Hackett, R.A.; Steptoe, A. Type 2 Diabetes Mellitus and Psychological Stress—A Modifiable Risk Factor. Nat. Rev. Endocrinol. 2017, 13, 547–560. [Google Scholar] [CrossRef]
- Chalazonitis, A.; Rao, M. Enteric Nervous System Manifestations of Neurodegenerative Disease. Brain Res. 2018, 1693, 207–213. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Mahony, S.M. The Microbiome-Gut-Brain Axis: From Bowel to Behavior. Neurogastroenterol. Motil. 2011, 23, 187–192. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut Feelings: The Emerging Biology of Gut-Brain Communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef]
- Rhee, S.H.; Pothoulakis, C.; Mayer, E.A. Principles and Clinical Implications of the Brain-Gut-Enteric Microbiota Axis. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Abildgaard, A.; Elfving, B.; Hokland, M.; Wegener, G.; Lund, S. Probiotic Treatment Reduces Depressive-like Behaviour in Rats Independently of Diet. Psychoneuroendocrinology 2017, 79, 40–48. [Google Scholar] [CrossRef]
- Ait-Belgnaoui, A.; Payard, I.; Rolland, C.; Harkat, C.; Braniste, V.; Théodorou, V.; Tompkins, T.A. Bifidobacterium Longum and Lactobacillus Helveticus Synergistically Suppress Stress-Related Visceral Hypersensitivity Through Hypothalamic-Pituitary-Adrenal Axis Modulation. J. Neurogastroenterol. Motil. 2018, 24, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Bercik, P.; Park, A.J.; Sinclair, D.; Khoshdel, A.; Lu, J.; Huang, X.; Deng, Y.; Blennerhassett, P.A.; Fahnestock, M.; Moine, D.; et al. The Anxiolytic Effect of Bifidobacterium Longum NCC3001 Involves Vagal Pathways for Gut-Brain Communication. Neurogastroenterol. Motil. 2011, 23, 1132–1139. [Google Scholar] [CrossRef] [Green Version]
- Benton, D.; Williams, C.; Brown, A. Impact of Consuming a Milk Drink Containing a Probiotic on Mood and Cognition. Eur. J. Clin. Nutr. 2007, 61, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.A.; Jazayeri, S.; Khosravi-Darani, K.; Solati, Z.; Mohammadpour, N.; Asemi, Z.; Adab, Z.; Djalali, M.; Tehrani-Doost, M.; Hosseini, M.; et al. The Effects of Probiotics on Mental Health and Hypothalamic-Pituitary-Adrenal Axis: A Randomized, Double-Blind, Placebo-Controlled Trial in Petrochemical Workers. Nutr. Neurosci. 2016, 19, 387–395. [Google Scholar] [CrossRef]
- Steenbergen, L.; Sellaro, R.; van Hemert, S.; Bosch, J.A.; Colzato, L.S. A Randomized Controlled Trial to Test the Effect of Multispecies Probiotics on Cognitive Reactivity to Sad Mood. Brain Behav. Immun. 2015, 48, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations; World Health Organization. Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations/World Health: London, ON, Canada, 2002. [Google Scholar]
- Watanabe, T.; Hayashi, K.; Kan, T.; Ohwaki, M.; Kawahara, T. Anti-Influenza Virus Effects of Enterococcus Faecalis KH2 and Lactobacillus Plantarum SNK12 RNA. Biosci. Microbiota Food Health 2021, 40, 43–49. [Google Scholar] [CrossRef]
- Inoue, Y.; Kambara, T.; Murata, N.; Komori-Yamaguchi, J.; Matsukura, S.; Takahashi, Y.; Ikezawa, Z.; Aihara, M. Effects of Oral Administration of Lactobacillus Acidophilus L-92 on the Symptoms and Serum Cytokines of Atopic Dermatitis in Japanese Adults: A Double-Blind, Randomized, Clinical Trial. Int. Arch. Allergy Immunol. 2014, 165, 247–254. [Google Scholar] [CrossRef]
- Ting, W.-J.; Kuo, W.-W.; Hsieh, D.J.-Y.; Yeh, Y.-L.; Day, C.-H.; Chen, Y.-H.; Chen, R.-J.; Padma, V.V.; Chen, Y.-H.; Huang, C.-Y. Heat Killed Lactobacillus Reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression. Int. J. Mol. Sci. 2015, 16, 25881–25896. [Google Scholar] [CrossRef] [Green Version]
- Tsukahara, T.; Kawase, T.; Yoshida, H.; Bukawa, W.; Kan, T.; Toyoda, A. Preliminary Investigation of the Effect of Oral Supplementation of Lactobacillus Plantarum Strain SNK12 on MRNA Levels of Neurotrophic Factors and GABA Receptors in the Hippocampus of Mice under Stress-Free and Sub-Chronic Mild Social Defeat-Stressing Conditions. Biosci. Biotechnol. Biochem. 2019, 83, 2345–2354. [Google Scholar] [CrossRef]
- Kashiwagi, S.; Yanai, H.; Aoki, T.; Tamai, H.; Tanaka, Y.; Hokugoh, K. A factor analytic study of the items for the personality description based on the principle of the three traits theory for the work curve of addition of the Uchida-Kraepelin psychodiagnostic test. Shinrigaku Kenkyu 1985, 56, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Goi, N.; Hirai, Y.; Harada, H.; Ikari, A.; Ono, T.; Kinae, N.; Hiramatsu, M.; Nakamura, K.; Takagi, K. Comparison of Peroxidase Response to Mental Arithmetic Stress in Saliva of Smokers and Non-Smokers. J. Toxicol. Sci. 2007, 32, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Y.; Ueki, H.; Kawashima, T.; Sugataka, K.; Muraoka, T.; Yamada, S. Involvement of the Noradrenergic System in Performance on a Continuous Task Requiring Effortful Attention. Neuropsychobiology 2004, 50, 336–340. [Google Scholar] [CrossRef]
- Sumiyoshi, T.; Yotsutsuji, T.; Kurachi, M.; Itoh, H.; Kurokawa, K.; Saitoh, O. Effect of Mental Stress on Plasma Homovanillic Acid in Healthy Human Subjects. Neuropsychopharmacology 1998, 19, 70–73. [Google Scholar] [CrossRef]
- Yasumasu, T.; Reyes Del Paso, G.A.; Takahara, K.; Nakashima, Y. Reduced Baroreflex Cardiac Sensitivity Predicts Increased Cognitive Performance. Psychophysiology 2006, 43, 41–45. [Google Scholar] [CrossRef]
- Dincă-Panaitescu, S.; Dincă-Panaitescu, M.; Achim, A.; Negoescu, R. Idioventricular Low Frequency Oscillation in QT Interval Responds Univocally to RR Confusing Kinds of Mental Stress. Integr. Physiol. Behav. Sci. 1999, 34, 10–18. [Google Scholar] [CrossRef]
- Tonooka, T. Basic Text of Uchida-Kraepelin Test, 2nd ed.; Nihon Seishin Gijutsu Kenkyujo: Tokyo, Japan, 1973; pp. 1–16. Available online: https://ci.nii.ac.jp/ncid/BA36332323 (accessed on 11 July 2022).
- Lee, S.; Yamamoto, S.; Kumagai-Takei, N.; Sada, N.; Yoshitome, K.; Nishimura, Y.; Kojima, T.; Otsuki, T. Didgeridoo Health Promotion Method Improves Mood, Mental Stress, and Stability of Autonomic Nervous System. Int. J. Environ. Res. Public Health 2019, 16, 3443. [Google Scholar] [CrossRef] [Green Version]
- Rossi, V.; Pourtois, G. Transient State-Dependent Fluctuations in Anxiety Measured Using STAI, POMS, PANAS or VAS: A Comparative Review. Anxiety Stress Coping 2012, 25, 603–645. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, S.S.; Kemeny, M.E. Acute Stressors and Cortisol Responses: A Theoretical Integration and Synthesis of Laboratory Research. Psychol. Bull. 2004, 130, 355–391. [Google Scholar] [CrossRef] [Green Version]
- Gunnar, M.R.; Talge, N.M.; Herrera, A. Stressor Paradigms in Developmental Studies: What Does and Does Not Work to Produce Mean Increases in Salivary Cortisol. Psychoneuroendocrinology 2009, 34, 953–967. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Tanaka, M.; Yamaguti, K.; Kajimoto, O.; Kuratsune, H.; Watanabe, Y. Mental Fatigue Caused by Prolonged Cognitive Load Associated with Sympathetic Hyperactivity. Behav. Brain Funct. 2011, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuratsune, D.; Tajima, S.; Koizumi, J.; Yamaguti, K.; Sasabe, T.; Mizuno, K.; Tanaka, M.; Okawa, N.; Mito, H.; Tsubone, H.; et al. Changes in Reaction Time, Coefficient of Variance of Reaction Time, and Autonomic Nerve Function in the Mental Fatigue State Caused by Long-Term Computerized Kraepelin Test Workload in Healthy Volunteers. World J. Neurosci. 2012, 2012, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Yamaguchi, T.; Hu, A.; Chiba, Y.; Marutani, K.; Kuwashima, Y.; Iwama, Y.; Watanabe, A.; Hikima, N.; Hasebe, K.; et al. Comprehensive Assessment of the Impact of Horticultural Activities on Salivary Stress Biomarkers, Psychological Status, and the Autonomic Nervous System Response Visualized Using a Wearable Biosensor. Neuroendocrinol. Lett. 2021, 42, 55–60. [Google Scholar]
- Heuchert, J.P.; McNair, D.M. Profile of Mood States, 2nd ed.; Kaneko Shobo Co., Ltd.: Tokyo, Japan, 2015. (In Japanese) [Google Scholar]
- Sung, J.; Woo, J.-M.; Kim, W.; Lim, S.-K.; Chung, E.-J. The Effect of Cognitive Behavior Therapy-Based “Forest Therapy” Program on Blood Pressure, Salivary Cortisol Level, and Quality of Life in Elderly Hypertensive Patients. Clin. Exp. Hypertens. 2012, 34, 1–7. [Google Scholar] [CrossRef]
- Granger, D.A.; Weisz, J.R.; McCracken, J.T.; Ikeda, S.C.; Douglas, P. Reciprocal Influences among Adrenocortical Activation, Psychosocial Processes, and the Behavioral Adjustment of Clinic-Referred Children. Child Dev. 1996, 67, 3250–3262. [Google Scholar] [CrossRef]
- Shida, K.; Sato, T.; Iizuka, R.; Hoshi, R.; Watanabe, O.; Igarashi, T.; Miyazaki, K.; Nanno, M.; Ishikawa, F. Daily Intake of Fermented Milk with Lactobacillus Casei Strain Shirota Reduces the Incidence and Duration of Upper Respiratory Tract Infections in Healthy Middle-Aged Office Workers. Eur. J. Nutr. 2017, 56, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Andersson, H.; Tullberg, C.; Ahrné, S.; Hamberg, K.; Lazou Ahrén, I.; Molin, G.; Sonesson, M.; Håkansson, Å. Oral Administration of Lactobacillus Plantarum 299v Reduces Cortisol Levels in Human Saliva during Examination Induced Stress: A Randomized, Double-Blind Controlled Trial. Int. J. Microbiol. 2016, 2016, 8469018. [Google Scholar] [CrossRef] [Green Version]
- Pacifici, A.; Pacifici, L.; Nuzzolese, M.; Cascella, G.; Ballini, A.; Santacroce, L.; Dipalma, G.; Aiello, E.; Amantea, M.; Saini, R.; et al. The Alteration of Stress-Related Physiological Parameters after Probiotics Administration in Oral Surgeons with Different Degrees of Surgical Experience. Clin. Ther. 2020, 171, e197–e208. [Google Scholar] [CrossRef]
- Gatti, G.; Cavallo, R.; Sartori, M.L.; del Ponte, D.; Masera, R.; Salvadori, A.; Carignola, R.; Angeli, A. Inhibition by Cortisol of Human Natural Killer (NK) Cell Activity. J. Steroid Biochem. 1987, 26, 49–58. [Google Scholar] [CrossRef]
- De Angelis, C.; Perelli, P.; Trezza, R.; Casagrande, M.; Biselli, R.; Pannitteri, G.; Marino, B.; Farrace, S. Modified Autonomic Balance in Offsprings of Diabetics Detected by Spectral Analysis of Heart Rate Variability. Metabolism 2001, 50, 1270–1274. [Google Scholar] [CrossRef]
- Summary Report of Comprehensive Survey of Living Conditions 2019, Ministry of Health, Labour and Welfare (Japan). Available online: https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa19/dl/14.pdf (accessed on 23 May 2022).
- Summary Report of Survey on Industrial Safety and Health (Actual Condition Survey) 2020, Ministry of Health, Labour and Welfare (Japan). Available online: https://www.mhlw.go.jp/toukei/list/dl/r02-46-50_gaikyo.pdf (accessed on 23 May 2022).
- Dahlgren, A.; Kecklund, G.; Akerstedt, T. Different Levels of Work-Related Stress and the Effects on Sleep, Fatigue and Cortisol. Scand. J. Work Environ. Health 2005, 31, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Malheiros, R.T.; Delgado, H.O.; Felber, D.T.; Kraus, S.I.; Dos Santos, A.R.S.; Manfredini, V.; da Silva, M.D. Mood Disorders Are Associated with the Reduction of Brain Derived Neurotrophic Factor in the Hypocampus in Rats Submitted to the Hipercaloric Diet. Metab. Brain Dis. 2021, 36, 145–151. [Google Scholar] [CrossRef]
- Shirayama, Y.; Chen, A.C.-H.; Nakagawa, S.; Russell, D.S.; Duman, R.S. Brain-Derived Neurotrophic Factor Produces Antidepressant Effects in Behavioral Models of Depression. J. Neurosci. 2002, 22, 3251–3261. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.D.; Duman, R.S. Peripheral BDNF Produces Antidepressant-like Effects in Cellular and Behavioral Models. Neuropsychopharmacology 2010, 35, 2378–2391. [Google Scholar] [CrossRef]
- Sherwin, E.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs 2016, 30, 1019–1041. [Google Scholar] [CrossRef] [Green Version]
- Cheon, M.-J.; Lim, S.-M.; Lee, N.-K.; Paik, H.-D. Probiotic Properties and Neuroprotective Effects of Lactobacillus Buchneri KU200793 Isolated from Korean Fermented Foods. Int. J. Mol. Sci. 2020, 21, 1227. [Google Scholar] [CrossRef] [Green Version]
- Tsankova, N.; Renthal, W.; Kumar, A.; Nestler, E.J. Epigenetic Regulation in Psychiatric Disorders. Nat. Rev. Neurosci. 2007, 8, 355–367. [Google Scholar] [CrossRef]
- Schroeder, F.A.; Lin, C.L.; Crusio, W.E.; Akbarian, S. Antidepressant-like Effects of the Histone Deacetylase Inhibitor, Sodium Butyrate, in the Mouse. Biol. Psychiatry 2007, 62, 55–64. [Google Scholar] [CrossRef]
- Hahn, C.; Islamian, A.P.; Renz, H.; Nockher, W.A. Airway Epithelial Cells Produce Neurotrophins and Promote the Survival of Eosinophils during Allergic Airway Inflammation. J. Allergy Clin. Immunol. 2006, 117, 787–794. [Google Scholar] [CrossRef]
- Raap, U.; Braunstahl, G.-J. The Role of Neurotrophins in the Pathophysiology of Allergic Rhinitis. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 8–13. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Vo, T.S. An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef] [Green Version]
- Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E.B.; D’Anna, R.; Arcoraci, V.; Burnett, B.P.; Minutoli, L.; et al. Genistein in the metabolic syndrome: Results of a randomized clinical trial. J. Clin. Endocrinol. Metab. 2013, 98, 3366–3374. [Google Scholar] [CrossRef] [Green Version]
- Marini, H.R. Mediterranean Diet and Soy Isoflavones for Integrated Management of the Menopausal Metabolic Syndrome. Nutrients 2022, 14, 1550. [Google Scholar] [CrossRef]
- Leonard, L.M.; Choi, M.S.; Cross, T.-W.L. Maximizing the Estrogenic Potential of Soy Isoflavones through the Gut Microbiome: Implication for Cardiometabolic Health in Postmenopausal Women. Nutrients 2022, 14, 553. [Google Scholar] [CrossRef]
1 | Participants who were under treatment or have a history of malignancy, heart failure, myocardial infarction, psychiatric disorders, immunocompromised participants, short bowel syndrome, ulcerative colitis, valvular heart disease, or bowel obstruction |
2 | Participants with implanted pacemakers or implantable defibrillators |
3 | Participants who were under treatment or had experienced chronic diseases (e.g., arrhythmia, hepatopathy, nephropathy, cerebrovascular disorder, rheumatism, diabetes, dyslipidemia, hypertension) |
4 | Participants who consume foods with possible functional properties on a regular basis |
5 | Participants who regularly use medicines (including herbal medicines) or supplements |
6 | Participants with allergies (to medicines and food related to the tested food) |
7 | Participants who are pregnant, lactating, or intend to become pregnant during the study period |
8 | Participants who have participated or will participate in other clinical trials during the 28 days prior to the date of consent form acquisition |
9 | Participants with irregular sleeping hours and sleeping habits due to night shifts, etc. |
10 | Participants who smoke |
11 | Participants with infant children |
12 | Participants who were judged as unsuitable for other reasons by the supervising physician |
Placebo | SNK-L | SNK-H | p-Values (vs. Placebo) | ||
---|---|---|---|---|---|
SNK-L | SNK-H | ||||
Number of Participants (male/female) | 22 (5/17) | 22 (6/16) | 20 (6/14) | 1.0000 | 0.7298 |
Age (years) | 36.0 ± 12.7 | 38.5 ± 12.0 | 38.1 ± 10.3 | 0.4830 | 0.5650 |
Height (cm) | 161.9 ± 7.1 | 162.8 ± 9.2 | 162.1 ± 8.7 | 0.7400 | 0.9490 |
Body weight (kg) | 56.3 ± 7.5 | 59.4 ± 13.2 | 56.4 ± 11.5 | 0.3465 | 0.9802 |
BMI (kg/m2) | 21.5 ± 2.6 | 22.3 ± 4.1 | 21.3 ± 2.8 | 0.3887 | 0.8502 |
Body fat ratio (%) | 26.3 ± 8.2 | 27.0 ± 9.9 | 25.6 ± 7.7 | 0.7993 | 0.7772 |
Systolic blood pressure (mmHg) | 111.5 ± 10.8 | 115.2 ± 13.0 | 114.1 ± 14.1 | 0.3379 | 0.5156 |
Diastolic blood pressure (mmHg) | 73.0 ± 8.3 | 75.0 ± 9.4 | 75.3 ± 8.9 | 0.4479 | 0.4052 |
Pulse rate (bpm) | 72.6 ± 10.0 | 70.1 ± 10.1 | 73.5 ± 10.3 | 0.4161 | 0.7835 |
BDI-2 total score (point) | 13.8 ± 9.5 | 15.4 ± 7.6 | 11.8 ± 9.5 | 0.5664 | 0.4653 |
Mean | SD | Between-Group Comparison (vs. Placebo) | |||||
---|---|---|---|---|---|---|---|
EMM Group Differences | SE | 95% CI− | 95% CI+ | p-Values | |||
Placebo | 52.32 | 11.89 | |||||
SNK-L | 48.77 | 7.34 | −3.72 | 1.84 | −7.40 | −0.05 | 0.0472 * |
SNK-H | 48.55 | 9.51 | −4.09 | 1.88 | −7.86 | −0.32 | 0.0338 * |
Placebo | SNK-L | SNK-H | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value (vs. Placebo) | Mean | SD | p-Value (vs. Placebo) | |
Pre-intervention | 52.09 | 10.88 | 52.32 | 7.69 | 0.9387 | 52.50 | 10.46 | 0.8925 |
Post-intervention | 52.32 | 11.89 | 48.77 | 7.34 | 0.0472 * | 48.55 | 9.51 | 0.0338 * |
Variation | 0.23 | 6.28 | −3.55 | 6.72 | 0.0472 * | −3.95 | 6.15 | 0.0338 * |
Placebo | SNK-L | SNK-H | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value (vs. Placebo) | Mean | SD | p-Value (vs. Placebo) | ||
TA | Pre-intervention | 54.09 | 11.28 | 51.09 | 5.89 | 0.3095 | 53.90 | 11.13 | 0.9495 |
Post-intervention | 54.18 | 12.26 | 49.27 | 7.65 | 0.2624 | 48.25 | 11.30 | 0.0218 * | |
Variation | 0.09 | 7.58 | −1.82 | 8.81 | 0.2624 | −5.65 | 8.60 | 0.0218 * | |
DD | Pre-intervention | 50.45 | 9.06 | 53.18 | 10.00 | 0.3560 | 51.60 | 10.12 | 0.7044 |
Post-intervention | 50.23 | 9.82 | 50.91 | 8.33 | 0.4583 | 49.10 | 9.17 | 0.2763 | |
Variation | −0.23 | 7.21 | −2.27 | 6.56 | 0.4583 | −2.50 | 4.74 | 0.2763 | |
AH | Pre-intervention | 48.00 | 10.55 | 48.27 | 9.23 | 0.9271 | 47.95 | 9.70 | 0.9869 |
Post-intervention | 49.50 | 11.51 | 43.59 | 6.22 | 0.0013 ** | 46.35 | 8.77 | 0.0975 | |
Variation | 1.50 | 6.01 | −4.68 | 8.28 | 0.0013 ** | −1.60 | 5.03 | 0.0975 | |
VA | Pre-intervention | 50.59 | 14.64 | 46.64 | 6.62 | 0.2185 | 47.15 | 8.47 | 0.2953 |
Post-intervention | 50.05 | 10.49 | 50.36 | 7.87 | 0.2218 | 49.45 | 10.87 | 0.5045 | |
Variation | −0.55 | 7.84 | 3.73 | 4.75 | 0.2218 | 2.30 | 11.37 | 0.5045 | |
FI | Pre-intervention | 57.59 | 10.94 | 51.68 | 10.96 | 0.0713 | 51.90 | 10.06 | 0.0896 |
Post-intervention | 55.09 | 11.05 | 49.36 | 10.16 | 0.4119 | 49.45 | 9.12 | 0.4093 | |
Variation | −2.50 | 9.38 | −2.32 | 8.01 | 0.4119 | −2.45 | 7.84 | 0.4093 | |
CB | Pre-intervention | 53.45 | 12.27 | 53.86 | 9.77 | 0.9060 | 55.05 | 12.21 | 0.6535 |
Post-intervention | 53.64 | 14.57 | 51.45 | 8.58 | 0.2755 | 50.15 | 9.64 | 0.0484 * | |
Variation | 0.18 | 8.65 | −2.41 | 7.27 | 0.2755 | −4.90 | 8.01 | 0.0484 * | |
F | Pre-intervention | 47.86 | 15.51 | 46.45 | 8.84 | 0.7096 | 47.90 | 12.20 | 0.9925 |
Post-intervention | 50.05 | 12.92 | 48.73 | 8.79 | 0.8607 | 48.10 | 11.67 | 0.4352 | |
Variation | 2.18 | 7.83 | 2.27 | 7.40 | 0.8607 | 0.20 | 12.18 | 0.4352 |
Placebo | SNK-L | SNK-H | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value (vs. Placebo) | Mean | SD | p-Value (vs. Placebo) | |
Pre-intervention | 0.36 | 0.14 | 0.37 | 0.14 | 0.8730 | 0.36 | 0.12 | 0.9573 |
Post-intervention | 0.41 | 0.24 | 0.29 | 0.11 | 0.0205 * | 0.31 | 0.14 | 0.0586 |
Variation | 0.05 | 0.24 | −0.07 | 0.16 | 0.0205 * | −0.05 | 0.16 | 0.0586 |
Placebo | SNK-L | SNK-H | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value (vs. Placebo) | Mean | SD | p-Value (vs. Placebo) | ||
LF | Pre-intervention | 706.23 | 649.73 | 535.09 | 554.61 | 0.4700 | 775.05 | 1072.52 | 0.7764 |
Post-intervention | 642.77 | 518.27 | 493.14 | 573.36 | 0.6136 | 899.45 | 1071.32 | 0.2929 | |
Variation | −63.45 | 717.31 | −41.95 | 747.32 | 0.6136 | 124.40 | 1323.53 | 0.2929 | |
HF | Pre-intervention | 484.45 | 394.20 | 366.91 | 355.20 | 0.6537 | 732.10 | 1445.44 | 0.3576 |
Post-intervention | 418.73 | 506.31 | 580.41 | 884.77 | 0.2616 | 692.70 | 624.95 | 0.3547 | |
Variation | −65.73 | 432.40 | 213.50 | 658.54 | 0.2616 | −39.40 | 1166.75 | 0.3547 | |
LF/HF | Pre-intervention | 3.00 | 2.84 | 2.83 | 2.71 | 0.8554 | 3.06 | 3.58 | 0.9498 |
Post-intervention | 3.66 | 3.65 | 1.60 | 1.46 | 0.0119 * | 2.36 | 3.03 | 0.0953 | |
Variation | 0.67 | 3.89 | −1.23 | 2.46 | 0.0119 * | −0.70 | 2.56 | 0.0953 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, T.; Hayashi, K.; Takara, T.; Teratani, T.; Kitayama, J.; Kawahara, T. Effect of Oral Administration of Lactiplantibacillus plantarum SNK12 on Temporary Stress in Adults: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study. Int. J. Environ. Res. Public Health 2022, 19, 8936. https://doi.org/10.3390/ijerph19158936
Watanabe T, Hayashi K, Takara T, Teratani T, Kitayama J, Kawahara T. Effect of Oral Administration of Lactiplantibacillus plantarum SNK12 on Temporary Stress in Adults: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study. International Journal of Environmental Research and Public Health. 2022; 19(15):8936. https://doi.org/10.3390/ijerph19158936
Chicago/Turabian StyleWatanabe, Takumi, Kyoko Hayashi, Tsuyoshi Takara, Takumi Teratani, Joji Kitayama, and Toshio Kawahara. 2022. "Effect of Oral Administration of Lactiplantibacillus plantarum SNK12 on Temporary Stress in Adults: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study" International Journal of Environmental Research and Public Health 19, no. 15: 8936. https://doi.org/10.3390/ijerph19158936
APA StyleWatanabe, T., Hayashi, K., Takara, T., Teratani, T., Kitayama, J., & Kawahara, T. (2022). Effect of Oral Administration of Lactiplantibacillus plantarum SNK12 on Temporary Stress in Adults: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study. International Journal of Environmental Research and Public Health, 19(15), 8936. https://doi.org/10.3390/ijerph19158936