Removal of Zn2+ from Aqueous Solution Using Biomass Ash and Its Modified Product as Biosorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Ash
2.2. Modification Experiment
2.3. Physico-Chemical Characterization and Surface Properties
2.4. Adsorption Experiments
2.4.1. Effect of pH
2.4.2. Adsorption Equilibrium Experiment
2.4.3. Adsorption Kinetics
2.4.4. Thermodynamic Studies
2.5. Data Processing
3. Results and Discussion
3.1. Physico-Chemical Characterization and Surface Properties
3.2. Effect of pH
3.3. Adsorption Isotherm
3.4. Thermodynamic Studies
3.5. Kinetic Adsorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panda, L.; Jena, S.K.; Rath, S.S.; Misra, P.K. Heavy metal removal from water by adsorption using a low-cost geopolymer. Environ. Sci. Pollut. Res. 2020, 27, 24284–24298. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wu, J.Z.; Wang, L.; Liu, X.M.; Meng, J.; Tang, X.J.; Tang, C.X.; Xu, J.M. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chem. Eng. J. 2019, 358, 1399–1409. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Li, J.; Luan, Y.N.; Dai, W. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicol. Environ. Saf. 2019, 190, 110089–110098. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.; Singh, M.P. Heavy metal contamination in water and its possible sources. Heavy Met. Environ. 2021, 3, 179–189. [Google Scholar]
- Tonh, M.S.; Garnier, J.; Ara, J.O.D.; Cunha, B.C.A.; Machado, W.; Dantas, E.; Ara, R.; Kutter, V.T.; Bonnet, M.P.; Swyler, P. Behavior of metallurgical zinc contamination in coastal environments: A survey of Zn from electroplating wastes and partitioning in sediments. Sci. Total Environ. 2020, 743, 140610–140619. [Google Scholar] [CrossRef]
- Guimares, D.; Rocha, N.D.; Morais, R.D.; Resende, A.D.P.; Lima, R.M.F.L.; Costa, G.M.D.; Leao, V.A. Precipitation of a layered double hydroxide comprising Mg2+ and Al3+ to remove sulphate ions from aqueous solutions. J. Environ. Chem. Eng. 2018, 7, 102815–102826. [Google Scholar] [CrossRef]
- Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Ismail, A.F. The Roles of Nanomaterials in Conventional and Emerging Technologies for Heavy Metal Removal: A State-of-the-Art Review. Nanomaterials 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Yaqub, M.; Lee, S.H. Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review. Environ. Eng. Res. 2018, 24, 363–375. [Google Scholar] [CrossRef]
- Khaligh, N.G.; Johan, M.R. Recent Application of the Various Nanomaterials and Nanocatalysts for the Heavy Metals’ Removal from Wastewater. Nano 2018, 13, 1830006–1830041. [Google Scholar] [CrossRef]
- Song, J.M.; Huang, G.X.; Han, D.Y.; Hou, Q.X.; Gan, L.; Zhang, M. A review of reactive media within permeable reactive barriers for the removal of heavy metal(loid)s in groundwater: Current status and future prospects. J. Clean. Prod. 2021, 319, 128644–128680. [Google Scholar] [CrossRef]
- Khan, F.S.A.; Mubarak, N.M.; Tan, Y.H.; Karri, R.R.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Mazari, S.A.; Nizamuddin, S. Magnetic nanoparticles incorporation into different substrates for dyes and heavy metals removal-A Review. Environ. Sci. Pollut. Res. 2020, 27, 43526–43541. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.B.; Tao, X.D.; Wang, H.; Li, W.K.; Ding, X.; Chu, H.Q. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrolysis 2021, 11, 105081–105095. [Google Scholar] [CrossRef]
- Saranya, K.; Palanisami, T.; Mallavarapu, M. Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Process Saf. Environ. Prot. 2016, 100, 173–182. [Google Scholar]
- Erdem, A.; Ngwabebhoh, F.A.; Yildiz, U. Novel macroporous cryogels with enhanced adsorption capability for the removal of Cu(II) ions from aqueous phase: Modelling, kinetics and recovery studies. J. Environ. Chem. Eng. 2017, 5, 1269–1280. [Google Scholar] [CrossRef]
- Akp, A.; Vy, B.; Sr, C.; Hoang, T.A.; Moscoso, M.S.; Ghfar, A.A.; Bathula, C. Investigation of mechanism of heavy metals (Cr6+, Pb2+ & Zn2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach. Chemosphere 2022, 286, 131796–131806. [Google Scholar]
- El-Hasan, T.; Matouq, M.; Al-Ayed, O. Biosorption of chromium and nickel from aqueous solution using pine cones, Eucalyptus bark, and moringa pods comparative study. Water Pract. Technol. 2020, 1, 72–82. [Google Scholar]
- Rizzi, V.; Lacalamita, D.; Gubitosa, J.; Fini, P.; Petrella, A.; Romita, R.; Agostiano, A.; Gabaldon, J.A.; Gorbe, M.I.F.; Morte, T. Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. Sci. Total Environ. 2019, 693, 133620–133632. [Google Scholar] [CrossRef]
- Awitdrus, A.; Putri, M.; Syahputra, R.F.; Iwantono, I.; Saktioto, S. Activated Carbon Based on Pineapple Crown for Heavy Metal Adsorption. Adv. Mater. Res. 2021, 1162, 57–64. [Google Scholar] [CrossRef]
- Murthy, T.K.; Gowrishankar, B.S.; Prabha, M.C.; Kruthi, M.; Krishna, R.H. Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: Equilibrium, kinetics and thermodynamic studies. Microchem. J. 2019, 146, 192–201. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, W.; Jin, J.L.; Choi, J.W. A Study on the Application of Coffee Waste Biochar with Hydrothermal Carbonization and Adsorption Performance of Heavy Metal. J. Korea Soc. Waste Manag. 2020, 37, 557–563. [Google Scholar] [CrossRef]
- Dhaouadi, F.; Sellaoui, L.; Reynel-Vila, H.E.; Landin-Sandoval, V.; Mendoza-Castillo, D.I.; Jaime-Leal, J.E.; Lima, E.C.; Bonilla-Petriciolet, A.; Lamine, A.B. Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: Interpretation of the adsorption isotherms via physical modelling. Environ. Sci. Pollut. Res. 2021, 28, 30943–30954. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Mastuli, M.S.; Mallah, S.H.; Mastuli, S. Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf. Desalination Water Treat. 2019, 124, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Pavan, F.A.; Camacho, E.S.; Lima, E.C.; Dotto, G.L.; Branco, V.T.A.; Dias, S.L.P. Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. J. Environ. Chem. Eng. 2014, 2, 230–238. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Chen, G. Adsorption of Heavy Metal Sewage on Nano-materials such as Titanate/TiO2 Added Lignin. Results Phys. 2019, 12, 405–411. [Google Scholar] [CrossRef]
- Golwala, S.D.; Kothari, K. Anaerobic Co-digestion of Cooked Food Waste, Paper Waste and Potato Peel Waste. Appl. Ecol. Environ. Sci. 2021, 9, 130–137. [Google Scholar]
- Akkaya, G.; Güzel, F. Application of Some Domestic Wastes as New Low-Cost Biosorbents for Removal of Methylene Blue: Kinetic and Equilibrium Studies. Chem. Eng. Commun. 2014, 201, 557–578. [Google Scholar] [CrossRef]
- Mahmood, T.; Malik, S.A.; Hussain, S.T. Biosorption and Recovery of Heavy Metals from Aqueous Solutions by Eichhornia Crassipes (Water Hyacinth) ASH. Bioresources 2010, 5, 1244–1256. [Google Scholar]
- Qiu, Q.L.; Jiang, X.G.; Lv, G.J.; Chen, Z.L.; Lu, S.Y.; Ni, M.J.; Yan, J.H.; Deng, X.B. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 2018, 335, 156–163. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Tran, T.; Dao, V.B.; Vu, T.D.; Hoang, T. Using Modified Fly Ash for Removal of Heavy Metal Ions from Aqueous Solution. J. Chem. 2020, 2020, 8428473. [Google Scholar] [CrossRef]
- Wang, C.; Yang, R.; Wang, H. Synthesis of ZIF-8/Fly Ash Composite for Adsorption of Cu2+, Zn2+ and Ni2+ from Aqueous Solutions. Materials 2020, 13, 214. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Qin, G.; Zhang, Y.; Sun, J.; Wang, S.; Jiang, L. Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash-ScienceDirect. J. Clean. Prod. 2018, 182, 776–782. [Google Scholar] [CrossRef]
- Zhai, J.; Burke, I.T.; Mayes, W.M.; Stewart, D.I. New insights into biomass combustion ash categorisation: A phylogenetic analysis. Fuel 2020, 287, 119469–119478. [Google Scholar] [CrossRef]
- Hou, X.L.; Liu, A.Q.; Cai, L.P. Heavy metal absorption effect of five physical adsorbents from simulated wastewater. Subtrop. Agric. Res. 2012, 8, 105–112. [Google Scholar]
- Xu, L.; Cui, H.; Zheng, X.; Liang, J.; Xing, X.; Yao, L.; Chen, Z.; Zhou, J. Adsorption of Cu2+ to biomass ash and its modified product. Water Sci. Technol. 2018, 2017, 115–125. [Google Scholar] [CrossRef]
- Silva, F.; Pissetti, F.L. Adsorption of cadmium ions on thiol or sulfonic-functionalized poly(dimethylsiloxane) networks. J. Colloid Interface Sci. 2014, 416, 95–100. [Google Scholar] [CrossRef]
- Tsai, C.K.; Doong, R.A.; Hung, H.Y. Sustainable valorization of mesoporous aluminosilicate composite from display panel glasses waste for adsorption of heavy metal ions. Sci. Total Environ. 2019, 673, 337–346. [Google Scholar] [CrossRef]
- Li, X.C.; Lu, T.R.; Wang, Y.; Yang, Y.F. Study on the controllable synthesis of SH-MCM-41 mesoporous materials and their adsorption properties of the La3+, Gd3+ and Yb3+. Chin. Chem. Lett. 2019, 30, 2318–2322. [Google Scholar] [CrossRef]
- Liao, Q.L.; Sang, N.X.; Hou, J.T.; Chen, Y.; Feng, W.; He, Z.Z. Synthesis of functionalized SBA-15 mesoporous materials and their adsorption properties. Mater. Sci. Technol. 2018, 26, 26–32. [Google Scholar]
- Liu, L.H.; Liu, J.Y.; Li, T.; Yang, G.G. Adsorption efficiency, thermodynamics, and kinetics of amino-functionalized mesoporous calcium silicate for the removal of heavy metal ions. Desalination Water Treat. 2018, 107, 165–181. [Google Scholar] [CrossRef]
- Dash, S.; Chaudhuri, H.; Gupta, R. Fabrication and Application of Low-Cost Thiol Functionalized Coal Fly Ash for Selective Adsorption of Heavy Toxic Metal Ions from Water. Ind. Eng. Chem. Res. 2017, 56, 1461–1470. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, X.B.; Cui, H.B.; Zhu, Z.Q.; Liang, J.N.; Zhou, J. Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash. Bioinorg. Chem. Appl. 2017, 2017, 3695604. [Google Scholar] [CrossRef] [PubMed]
- Walcarius, A.; Mercier, L. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. 2010, 20, 4478–4490. [Google Scholar] [CrossRef]
- Pizarro, J.; Castillo, X.; Jara, S.; Ortiz, C.; Navarro, P.; Cid, H.; Rioseco, H.; Barros, D.; Belzile, N. Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica. Fuel 2015, 156, 96–102. [Google Scholar] [CrossRef]
- Machida, M.; Fotoohi, B.; Amamo, Y.; Ohba, T.; Kanoh, H.; Mercier, L. Cadmium(II) adsorption using functional mesoporous silica and activated carbon. J. Hazard. Mater. 2012, 221, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Maslova, M.; Mudruk, N.; Ivanets, A.; Shashkova, I. The effect of pH on removal of toxic metal ions from aqueous solutions using composite sorbent based on Ti-Ca-Mg phosphates. J. Water Process Eng. 2020, 40, 101830–101842. [Google Scholar] [CrossRef]
- Novais, R.M.; Gameiro, T.; Carvalheiras, J.; Seabra, M.P.; Tarelho, L.A.C.; Labrincha, J.A.; Capela, I. High pH buffer capacity biomass fly ash-based geopolymer spheres to boost methane yield in anaerobic digestion. J. Clean. Prod. 2018, 178, 258–267. [Google Scholar] [CrossRef]
- Shen, T.M.; Xu, H.; Miao, Y.; Ma, L.L.; Chen, N.C.; Xie, Q.L. Study on the adsorption process of Cd(II) by Mn-diatomite modified adsorbent. Mater. Lett. 2021, 300, 130087–130092. [Google Scholar] [CrossRef]
- Thabede, P.M.; Shooto, N.D.; Xaba, T.; Naidoo, E.B. Adsorption studies of toxic cadmium(II) and chromium(VI) ions from aqueous solution by activated black cumin (Nigella sativa) seeds. J. Environ. Chem. Eng. 2020, 8, 104045–104057. [Google Scholar] [CrossRef]
- He, C.; Xie, F. Adsorption Behavior of Manganese Dioxide Towards Heavy Metal Ions: Surface Zeta Potential Effect. Water Air Soil Pollut. 2018, 229, 77–90. [Google Scholar] [CrossRef]
- Wu, S.Y.; Zhang, W.J.; Zhang, Y.; Wang, Z.; Li, J.Q.; Chai, J.F. Batch experiments to investigate the effect of colloidal silica on benzene adsorption. Environ. Earth Sci. 2019, 78, 614. [Google Scholar] [CrossRef]
- Mustapha, S.; Shuaib, D.T.; Ndamitso, M.M.; Etsuyankpa, M.B.; Sumaila, A.; Mohammed, U.M.; Nasirudeen, M.B. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Appl. Water Sci. 2019, 9, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Awual, M.R.; Hasan, M.M.; Shahat, A. Functionalized novel mesoporous adsorbent for selective lead(II) ions monitoring and removal from wastewater. Sens. Actuators B Chem. 2014, 203, 854–863. [Google Scholar] [CrossRef]
- Irving, L. Adsorption of gases on glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar]
- Freundlich, H.M.F. Uber Die Adsorption in Losungen. Z. Für Phys. Chem. 1906, 57, 385–490. [Google Scholar] [CrossRef]
- Zhou, L.; Chi, T.Y.; Zhou, Y.Y.; Lv, J.D.; Chen, H.; Sun, S.Q.; Zhu, X.F.; Wu, H.P.; Hu, X. Efficient removal of hexavalent chromium through adsorption-reduction-adsorption pathway by iron-clay biochar composite prepared from Populus nigra. Sep. Purif. Technol. 2022, 285, 120386. [Google Scholar] [CrossRef]
- Bortoluz, J.; Ferrarini, F.; Bonetto, L.R.; Crespo, J.D.C.; Giovanela, M. Use of low-cost natural waste from the furniture industry for the removal of methylene blue by adsorption: Isotherms, kinetics and thermodynamics. Cellulose 2020, 27, 6445–6466. [Google Scholar] [CrossRef]
- Budi, A.; Stipp SL, S.; Andersson, M.P. The effect of solvation and temperature on the adsorption of small organic molecules on calcite. Phys. Chem. Chem. Phys. 2018, 20, 7140–7147. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I. Removal of lead and chromium from wastewater using bagasse fly ash—A sugar industry waste. J. Colloid Interface Sci. 2004, 271, 321–328. [Google Scholar] [CrossRef]
- Fu, J.; Li, Y.; Ye, C.; Lin, C. Study on the adsoption kinetics and thermodynamics of DMF on macroporous adsorbents. Acta Entiae Circumstantiae 2012, 32, 639–644. [Google Scholar]
- Rupa, S.; Ankur, S.; UPittman, C.; Dinesh, M. Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. Rsc Adv. 2017, 7, 8606–8624. [Google Scholar]
- Anđelka, D.; Ksenija, R.K.; Nikola, S.V.; Milena, S.D.; Zvezdana, D.B.; Sandra, V.K.; Matovic, L.L. Simultaneous removal of Pb2+, Cu2+, Zn2+ and Cd2+ from highly acidic solutions using mechanochemically synthesized montmorillonite–kaolinite/TiO2 composite. Appl. Clay Sci. 2015, 103, 20–27. [Google Scholar]
- Makeswari, M. Competitive adsorption of Nickel onto Ricinus Communis leaves as a low cost adsorbent. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 508–528. [Google Scholar]
- Zahra, Z.; Reza, G.F.; Abdolmajid, R.; Mehdi, Z.; Sedigheh, Z. Improvement of biochar capability in Cr immobilization via modification with chitosan and hematite and inoculation with Pseudomonas putida. Commun. Soil Sci. Plant Anal. 2020, 51, 963–975. [Google Scholar]
Analysis | Sample | ||
---|---|---|---|
HMS-NH2 [44] | Biomass Ash | Modified Biomass | |
BET surface area (m2/g) | 17 | 21.4 ± 0.17 | 186 ± 0.15 |
Adsorbent | Temp (°C) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
qL (mg/g) | KL (L/mg) | R2 | n | KF (mg/g) (mg/L)1/n | R2 | ||
Biomass ash | 30 | 20.0 | 1.19 | 1.00 | 5.65 | 11.9 | 0.931 |
45 | 20.0 | 1.14 | 1.00 | 6.37 | 12.5 | 0.899 | |
60 | 20.4 | 1.15 | 0.999 | 6.41 | 12.8 | 0.915 | |
Modified biomass ash | 30 | 26.3 | 1.09 | 0.992 | 3.45 | 14.1 | 0.992 |
45 | 27.0 | 1.23 | 0.993 | 3.36 | 14.3 | 0.999 | |
60 | 23.3 | 2.05 | 0.993 | 3.41 | 14.6 | 0.999 |
Temp (°C) | Thermodynamic Parameters | |||
---|---|---|---|---|
ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (J/mol/K) | ||
Biomass ash | 30 | −0.438 | ||
45 | −0.347 | 0.513 | 2.70 | |
60 | −0.363 | |||
Synthesized matrix | 30 | −0.217 | ||
45 | −0.548 | 30.0 | 96.0 | |
60 | −1.99 |
Adsorbent | Temp (°C) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||
---|---|---|---|---|---|
k1 (min−1) | R2 | k2 (g/mg/min) | R2 | ||
Biomass ash | 30 | 1.51 × 10−2 | 0.968 | 4.07 × 10−4 | 0.775 |
Synthesized matrix | 1.12 × 10−2 | 0.445 | 2.91 × 10−2 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Xing, X.; Peng, J. Removal of Zn2+ from Aqueous Solution Using Biomass Ash and Its Modified Product as Biosorbent. Int. J. Environ. Res. Public Health 2022, 19, 9006. https://doi.org/10.3390/ijerph19159006
Xu L, Xing X, Peng J. Removal of Zn2+ from Aqueous Solution Using Biomass Ash and Its Modified Product as Biosorbent. International Journal of Environmental Research and Public Health. 2022; 19(15):9006. https://doi.org/10.3390/ijerph19159006
Chicago/Turabian StyleXu, Lei, Xiangyu Xing, and Jianbiao Peng. 2022. "Removal of Zn2+ from Aqueous Solution Using Biomass Ash and Its Modified Product as Biosorbent" International Journal of Environmental Research and Public Health 19, no. 15: 9006. https://doi.org/10.3390/ijerph19159006
APA StyleXu, L., Xing, X., & Peng, J. (2022). Removal of Zn2+ from Aqueous Solution Using Biomass Ash and Its Modified Product as Biosorbent. International Journal of Environmental Research and Public Health, 19(15), 9006. https://doi.org/10.3390/ijerph19159006