Receiver Operating Characteristic Curve Analysis of the Somatosensory Organization Test, Berg Balance Scale, and Fall Efficacy Scale–International for Predicting Falls in Discharged Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Setting
2.3. Clinical Outcome Measures
2.3.1. SOT
2.3.2. BBS
2.3.3. FES-I
2.4. Data Collection Procedure
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandian, J.D.; Gall, S.L.; Kate, M.P.; Silva, G.S.; Akinyemi, R.O.; Ovbiagele, B.I.; Lavados, P.M.; Gandhi, D.B.C.; Thrift, A.G. Prevention of stroke: A global perspective. Lancet 2018, 392, 1269–1278. [Google Scholar] [CrossRef]
- Weerdesteyn, V.; de Niet, M.; van Duijnhoven, H.J.R.; Geurts, A.C.H. Falls in individuals with stroke. J. Rehabil. Res. Dev. 2008, 45, 1195–1213. [Google Scholar] [CrossRef] [PubMed]
- Denissen, S.; Staring, W.; Kunkel, D.; Pickering, R.M.; Lennon, S.; Geurts, A.C.H.; Weerdesteyn, V.; Verheyden, G. Interventions for preventing falls in people after stroke. Cochrane Database Syst. Rev. 2019, 10, CD008728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsson, C.M.; Hansson, P.O.; Persson, C.U. Early prediction of falls after stroke: A 12-month follow-up of 490 patients in the fall study of gothenburg (fallsgot). Clin. Rehabil. 2019, 33, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, C.M.; Hansson, P.O.; Persson, C.U. Determinants of recurrent falls poststroke: A 1-year follow-up of the fall study of gothenburg. Arch. Phys. Med. Rehabil. 2020, 101, 1541–1548. [Google Scholar] [CrossRef]
- Batchelor, F.A.; Mackintosh, S.F.; Said, C.M.; Hill, K.D. Falls after stroke. Int. J. Stroke 2012, 7, 482–490. [Google Scholar] [CrossRef]
- Suzuki, T.; Sonoda, S.; Misawa, K.; Saitoh, E.; Shimizu, Y.; Kotake, T. Incidence and consequence of falls in inpatient rehabilitation of stroke patients. Exp. Aging Res. 2005, 31, 457–469. [Google Scholar] [CrossRef]
- Persson, C.U.; Hansson, P.-O. Determinants of falls after stroke based on data on 5065 patients from the swedish väststroke and riksstroke registers. Sci. Rep. 2021, 11, 24035. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.B.; Matthews, J.T. An integrative review of factors associated with falls during post-stroke rehabilitation. J. Nurs. Scholarsh. 2010, 42, 395–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minet, L.R.; Peterson, E.; von Koch, L.; Ytterberg, C. Occurrence and predictors of falls in people with stroke six-year prospective study. Stroke 2015, 46, 2688–2690. [Google Scholar] [CrossRef]
- Goh, H.T.; Nadarajah, M.; Hamzah, N.B.; Varadan, P.; Tan, M.P. Falls and fear of falling after stroke: A case-control study. Pm&R 2016, 8, 1173–1180. [Google Scholar]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2019, 50, e344–e418. [Google Scholar] [PubMed]
- Norrving, B.; Barrick, J.; Davalos, A.; Dichgans, M.; Cordonnier, C.; Guekht, A.; Kutluk, K.; Mikulik, R.; Wardlaw, J.; Richard, E. Action plan for stroke in europe 2018–2030. Eur. Stroke J. 2018, 3, 309–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.B.; Medeiros, Í.R.; Greters, M.G.; Frota, N.A.; Lucato, L.T.; Scaff, M.; Conforto, A.B. Abnormal sensory integration affects balance control in hemiparetic patients within the first year after stroke. Clinics 2011, 66, 2043–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, A.; Braun, C.H.; Lewek, M.D.; Fritz, S.L. Balance impairment limits ability to increase walking speed in individuals with chronic stroke. Disabil. Rehabil. 2017, 39, 497–502. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, C.B.; de Medeiros, I.R.T.; Frota, N.A.F.; Greters, M.E.; Conforto, A.B. Balance control in hemiparetic stroke patients: Main tools for evaluation. J. Rehabil. Res. Dev. 2008, 45, 1215–1226. [Google Scholar] [CrossRef]
- Maeda, N.; Kato, J.; Shimada, T. Predicting the probability for fall incidence in stroke patients using the berg balance scale. J. Int. Med. Res. 2009, 37, 697–704. [Google Scholar] [CrossRef]
- Walsh, M.E.; Horgan, N.F.; Walsh, C.D.; Galvin, R. Systematic review of risk prediction models for falls after stroke. J. Epidemiol. Community Health 2016, 70, 513–519. [Google Scholar] [CrossRef]
- Ashburn, A.; Hyndman, D.; Pickering, R.; Yardley, L.; Harris, S. Predicting people with stroke at risk of falls. Age Ageing 2008, 37, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackintosh, S.F.; Hill, K.D.; Dodd, K.J.; Goldie, P.A.; Culham, E.G. Balance score and a history of falls in hospital predict recurrent falls in the 6 months following stroke rehabilitation. Arch. Phys. Med. Rehabil. 2006, 87, 1583–1589. [Google Scholar] [CrossRef]
- Lima, C.A.; Ricci, N.A.; Nogueira, E.C.; Perracini, M.R. The berg balance scale as a clinical screening tool to predict fall risk in older adults: A systematic review. Physiotherapy 2018, 104, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Lee, Y.-S. The diagnostic accuracy of the berg balance scale in predicting falls. West. J. Nurs. Res. 2017, 39, 1502–1525. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Horak, F.B. The relevance of clinical balance assessment tools to differentiate balance deficits. Eur. J. Phys. Rehabil. Med. 2010, 46, 239–248. [Google Scholar] [PubMed]
- Sawacha, Z.; Carraro, E.; Contessa, P.; Guiotto, A.; Masiero, S.; Cobelli, C. Relationship between clinical and instrumental balance assessments in chronic post-stroke hemiparesis subjects. J. Neuroeng. Rehabil. 2013, 10, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lendraitiene, E.; Tamosauskaite, A.; Petruseviciene, D.; Savickas, R. Balance evaluation techniques and physical therapy in post-stroke patients: A literature review. Neurologia I Neurochirurgia Polska 2017, 51, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, S.L.; Marchetti, G.F.; Schade, A.I. The relationship between falls history and computerized dynamic posturography in persons with balance and vestibular disorders. Arch. Phys. Med. Rehabil. 2006, 87, 402–407. [Google Scholar] [CrossRef]
- Chen, B.; Liu, P.; Xiao, F.; Liu, Z.; Wang, Y. Review of the upright balance assessment based on the force plate. Int. J. Environ. Res. Public Health 2021, 18, 2696. [Google Scholar] [CrossRef]
- Visser, J.E.; Carpenter, M.G.; van der Kooij, H.; Bloem, B.R. The clinical utility of posturography. Clin. Neurophysiol. 2008, 119, 2424–2436. [Google Scholar] [CrossRef]
- Schmid, A.A.; Acuff, M.; Doster, K.; Gwaltney-Duiser, A.; Whitaker, A.; Damush, T.; Williams, L.; Hendrie, H. Poststroke fear of falling in the hospital setting. Top. Stroke Rehabil. 2009, 16, 357–366. [Google Scholar] [CrossRef]
- Park, S.; Cho, O.-H. Fear of falling and related factors during everyday activities in patients with chronic stroke. Appl. Nurs. Res. 2021, 62, 151492. [Google Scholar] [CrossRef]
- Thilarajah, S.; Mentiplay, B.F.; Bower, K.J.; Tan, D.; Pua, Y.H.; Williams, G.; Koh, G.; Clark, R.A. Factors associated with post-stroke physical activity: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2018, 99, 1876–1889. [Google Scholar] [CrossRef] [PubMed]
- Faria-Fortini, I.; Polese, J.C.; Faria, C.D.C.M.; Scianni, A.A.; Nascimento, L.R.; Teixeira-Salmela, L.F. Fall efficacy scale–international cut-off score discriminates fallers and non-fallers individuals who have had stroke. J. Bodyw. Mov. Ther. 2021, 26, 167–173. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (strobe) statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Bartos, A.; Orlikova, H.; Raisova, M.; Ripova, D. Czech training version of the montreal cognitive assessment (moca-cz1) for early identification of alzheimer disease. Cesk. Slov. Neurol. Neurochir. 2014, 77, 587–595. [Google Scholar]
- Munthe-Kaas, R.; Aam, S.; Saltvedt, I.; Wyller, T.B.; Pendlebury, S.T.; Lydersen, S.; Ihle-Hansen, H. Test accuracy of the montreal cognitive assessment in screening for early poststroke neurocognitive disorder the nor-coast study. Stroke 2021, 52, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Marvin, K.; Zelter, L. Barthel Index (bi); Canadian Partnership for Stroke Recovery: Ottawa, ON, Canada, 2015. [Google Scholar]
- Mehrholz, J.; Wagner, K.; Rutte, K.; Meiβner, D.; Pohl, M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1314–1319. [Google Scholar] [CrossRef]
- Borah, D.; Wadhwa, S.; Singh, U.; Yadav, S.L.; Bhattacharjee, M.; Sindhu, V. Age related changes in postural stability. Indian J. Physiol. Pharmacol. 2007, 51, 395–404. [Google Scholar] [PubMed]
- International, N. Balance Manager Systems: Instructions for Use; Natus Medical Incorporated: Clackamas, OR, USA, 2013. [Google Scholar]
- Wei, W.E.; De Silva, D.A.; Chang, H.M.; Yao, J.; Matchar, D.B.; Young, S.H.Y.; See, S.J.; Lim, G.H.; Wong, T.H.; Venketasubramanian, N. Post-stroke patients with moderate function have the greatest risk of falls: A national cohort study. BMC Geriatr. 2019, 19, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinkel-Ivy, A.; Wong, J.S.; Mansfield, A. Balance confidence is related to features of balance and gait in individuals with chronic stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Reguli, Z.; Svobodová, L. Česká verze diagnostiky strachu z pádů u seniorů–fes-i (falls efficacy scale international)[czech version of the diagnosis of fear of falls in seniors—fes-i (falls efficacy scale international)]. Studia Sport. 2011, 5, 5–12. [Google Scholar] [CrossRef]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial validation of the falls efficacy scale-international (fes-i). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verheyden, G.; Weerdesteyn, V.; Pickering, R.M.; Kunkel, D.; Lennon, S.; Geurts, A.C.H.; Ashburn, A. Interventions for preventing falls in people after stroke. Cochrane Database Syst. Rev. 2013, 45, CD008728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laren, A.; Odqvist, A.; Hansson, P.O.; Persson, C.U. Fear of falling in acute stroke: The fall study of gothenburg (fallsgot). Top. Stroke Rehabil. 2018, 25, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.S.; Brooks, D.; Inness, E.L.; Mansfield, A. The impact of falls on motor and cognitive recovery after discharge from in-patient stroke rehabilitation. J. Stroke Cerebrovasc. Dis. 2016, 25, 1613–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piirtola, M.; Era, P. Force platform measurements as predictors of falls among older people—A review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Faraldo-Garcia, A.; Santos-Perez, S.; Rossi-Izquierdo, M.; Lirola-Delgado, A.; Vaamonde-Sanchez-Andrade, I.; del-Rio-Valeiras, M.; Soto-Varela, A. Posturographic limits of stability can predict the increased risk of falls in elderly patients with instability? Acta Oto-Laryngol. 2016, 136, 1125–1129. [Google Scholar] [CrossRef]
- Kudlac, M.; Sabol, J.; Kaiser, K.; Kane, C.; Phillips, R.S. Reliability and validity of the berg balance scale in the stroke population: A systematic review. Phys. Occup. Ther. Geriatr. 2019, 37, 196–221. [Google Scholar] [CrossRef]
- Halmi, Z.; Stone, T.W.; Dinya, E.; Málly, J. Postural instability years after stroke. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2020, 29, 105038. [Google Scholar] [CrossRef]
- Zahl, S.; Mahir, L.; Lmidmani, F.; Elfatimi, A. Postural balance and fall risk after stroke in patients alive at home. Cerebrovasc. Dis. 2017, 43, 127–130. [Google Scholar]
- Liao, W.-L.; Chang, C.-W.; Sung, P.-Y.; Hsu, W.-N.; Lai, M.-W.; Tsai, S.-W. The berg balance scale at admission can predict community ambulation at discharge in patients with stroke. Medicina 2021, 57, 556. [Google Scholar] [CrossRef]
- Yu, H.-x.; Wang, Z.-x.; Liu, C.-b.; Dai, P.; Lan, Y.; Xu, G.-q. Effect of cognitive function on balance and posture control after stroke. Neural. Plast. 2021, 2021, 6636999. [Google Scholar] [CrossRef]
- Saverino, A.; Waller, D.; Rantell, K.; Parry, R.; Moriarty, A.; Playford, E.D. The role of cognitive factors in predicting balance and fall risk in a neuro-rehabilitation setting. PLoS ONE 2016, 11, e0153469. [Google Scholar] [CrossRef] [Green Version]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dušek, L.; Pavlík, T.; Jarkovský, J.; Koptíková, J.; Analýza dat v Neurologii xxv. Hodnocení Diagnostických Testů–Senzitivita a Specificita. 2011. Available online: https://is.muni.cz/publication/960965/cs (accessed on 1 June 2022).
Characteristics | All Participants N = 84 | No. Falls within 6 Months (Non-Fallers) N = 52 | Falls within 6 Months (Fallers) N = 32 | p |
---|---|---|---|---|
Age (years), median (IQR) * | 68.5 (62.3–73.5) | 50.0 (55.8–71) | 72.5 (66–76.8) | 0.011 |
Sex, female (%) ** | 42 (50) | 22 (42) | 20 (62) | 0.072 |
Time from the onset of stroke to measurement (day), median (IQR) ** | 22 (11–33) | 21 (17–30) | 23 (19–35) | 0.233 |
Affected vascular territory | ||||
ACM, n (%) ** | 35 (41.7) | 22 (42.3) | 13 (40.1) | 0.879 |
ACA, n (%) ** | 5 (6.0) | 2 (3.9) | 3 (9.4) | 0.298 |
VB, n (%) ** | 27 (32.1) | 18 (34.6) | 9 (28.1) | 0.536 |
Cerebellum, n (%) *** | 11 (13) | 9 (17.3) | 2 (6.23) | 0.193 |
Arteria carotis int, n (%) *** | 8 (9.5) | 3 (5.8) | 5 (15.6) | 0.249 |
Clinical characteristics | ||||
MOCA (score), median (IQR) * | 27 (23–28) | 27 (26–28) | 25 (20–27) | 0.020 |
BI (score), median (IQR) * | 90 (85–95) | 95 (90–100) | 85 (75–90) | <0.001 |
FAC, median (IQR) * | 4 (3–4) | 4 (3–5) | 3 (3–4) | <0.001 |
Fear of falling, n (%) ** | 64 (76.2) | 34 (65.4) | 30 (93.8) | 0.003 |
SOT (score), median (IQR) * | 61 (48.0–70.8) | 64 (53.0–73.4) | 54 (46.0–61.8) | <0.001 |
BBS (score), median (IQR) * | 45 (37.0–48.8) | 46 (40.5–51.0) | 41 (31.0–47.0) | 0.003 |
FES-I (score), median (IQR) * | 28.5 (23.0–38.8) | 25.5 (21.3–33.8) | 36.5 (27.0–43.8) | 0.003 |
Cut-Off Score | SOT ≤60 | BBS ≤35 | BBS ≤42 | FES-I ≥27 | FES-I ≥29 |
---|---|---|---|---|---|
Value | Value | Value | Value | Value | |
95% CI | 95% CI | 95% CI | 95% CI | 95% CI | |
Prevalence (%) | 32/84 38.1 | 32/84 38.1 | 32/84 38.1 | 32/84 38.1 | 32/84 38.1 |
(27.7–49.3) | (27.7–49.3) | (27.7–49.3) | (27.7–49.3) | (27.7–49.3) | |
Sensitivity (%) | 23/32 71.9 | 14/32 43.8 | 18/32 56.3 | 26/32 81.3 | 23/32 71.9 |
(53.3–86.3) | (26.4–62.3) | (37.7–73.6) | (63.6–92.8) | (53.3–86.3) | |
Specificity (%) | 34/52 65.4 | 48/52 88.5 | 35/52 67.3 | 29/52 55.8 | 33/52 63.5 |
(50.9–78.0) | (76.6–95.6) | (52.9–79.7) | (41.3–69.5) | (49.0–76.4) | |
PPV (%) | 56.1 | 70.0 | 51.4 | 53.1 | 54.8 |
(39.7–71.5) | (45.7–88.1) | (34.0–68.6) | (38.3–67.5) | (38.7–70.2) | |
NPV (%) | 79.1 | 71.9 | 71.4 | 82.9 | 78.6 |
(64.0–90.0) | (59.2–82.4) | (56.7–83.4) | (66.4–93.4) | (63.2–89.7) | |
LR (+) | 2.1 | 3.8 | 1.7 | 1.8 | 2.0 |
(1.34–3.2) | (1.6–8.9) | (1.1–2.8) | (1.3–2.6) | (1.3–3.0) | |
LR (−) | 0.43 | 0.64 | 0.65 | 0.34 | 0.44 |
(0.24–0.77) | (0.46–0.88) | (0.42–1.01) | (0.16–0.72) | (0.25–0.8) | |
AUC | 0.686 | 0.661 | 0.618 | 0.685 | 0.677 |
(0.58–0.79) | (0.56–0.76) | (0.51–0.73) | (0.59–0.78) | (0.57–0.58) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiedorová, I.; Mrázková, E.; Zádrapová, M.; Tomášková, H. Receiver Operating Characteristic Curve Analysis of the Somatosensory Organization Test, Berg Balance Scale, and Fall Efficacy Scale–International for Predicting Falls in Discharged Stroke Patients. Int. J. Environ. Res. Public Health 2022, 19, 9181. https://doi.org/10.3390/ijerph19159181
Fiedorová I, Mrázková E, Zádrapová M, Tomášková H. Receiver Operating Characteristic Curve Analysis of the Somatosensory Organization Test, Berg Balance Scale, and Fall Efficacy Scale–International for Predicting Falls in Discharged Stroke Patients. International Journal of Environmental Research and Public Health. 2022; 19(15):9181. https://doi.org/10.3390/ijerph19159181
Chicago/Turabian StyleFiedorová, Iva, Eva Mrázková, Mariana Zádrapová, and Hana Tomášková. 2022. "Receiver Operating Characteristic Curve Analysis of the Somatosensory Organization Test, Berg Balance Scale, and Fall Efficacy Scale–International for Predicting Falls in Discharged Stroke Patients" International Journal of Environmental Research and Public Health 19, no. 15: 9181. https://doi.org/10.3390/ijerph19159181
APA StyleFiedorová, I., Mrázková, E., Zádrapová, M., & Tomášková, H. (2022). Receiver Operating Characteristic Curve Analysis of the Somatosensory Organization Test, Berg Balance Scale, and Fall Efficacy Scale–International for Predicting Falls in Discharged Stroke Patients. International Journal of Environmental Research and Public Health, 19(15), 9181. https://doi.org/10.3390/ijerph19159181