Estimating Carbon Sequestration Potential of Forest and Its Influencing Factors at Fine Spatial-Scales: A Case Study of Lushan City in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods for Estimating Carbon Sequestration Potential
2.3.1. DBH-Tree Height Growth Model
2.3.2. Stochastic Simulation of Volume Growth
2.3.3. Estimation of Carbon Sequestration Potential
2.4. Influencing Factors Analysis Method
3. Results
3.1. Modeling Results of Tree Forest Volume Growth
3.2. Characteristics of the Current Carbon Sequestration Capacity of Tree Forests
3.3. Predicted Carbon Sequestration Potential of Tree Forests
3.4. Exploration of Factors Influencing Carbon Sequestration Potential
4. Discussion
4.1. Estimation Methodology and Estimation Results
4.2. Factors Influencing Carbon Sequestration Potential
4.3. Uncertainties and Potential Constraints
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Post, W.; Emanuel, W.; Zinke, P.; Stangenberger, A. Soil Carbon Pools and World Life Zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Hisano, M.; Searle, E.B.; Chen, H.Y.H. Biodiversity as a Solution to Mitigate Climate Change Impacts on the Functioning of Forest Ecosystems. Biol. Rev. 2018, 93, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, G.; Wang, Q. Effects of Climate and Forest Age on the Ecosystem Carbon Exchange of Afforestation. J. For. Res. 2020, 31, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lu, N.; Fu, B.; Wang, S.; Deng, L.; Wang, L. Current and Future Carbon Stocks of Natural Forests in China. For. Ecol. Manag. 2022, 511, 120137. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Loveland, T.R. Temporal Evolution of Carbon Budgets of the Appalachian Forests in the U.S. from 1972 to 2000. For. Ecol. Manag. 2006, 222, 191–201. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, Y.; Wang, L.; Zheng, S.; Xu, W. Assessment of Carbon Density in Natural Mountain Forest Ecosystems at Northwest China. Int. J. Environ. Res. Public. Health 2021, 18, 2098. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Review on Carbon Storage Estimation of Forest Ecosystem and Applications in China. For. Ecosyst. 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.P.; Koerper, G.J.; Harmon, M.E.; Lee, J.J. A Carbon Budget for Forests of the Conterminous United States. Ecol. Appl. 1995, 5, 421–436. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, X.; Fu, C.; Yu, G.; Liu, Z. Estimation of Carbon Sequestration Potential of Forest Biomass in China based on National Forest Resources Inventory. Acta Ecol. Sin. 2019, 39, 4002–4010. [Google Scholar] [CrossRef]
- Genet, H.; Bréda, N.; Dufrêne, E. Age-Related Variation in Carbon Allocation at Tree and Stand Scales in Beech (Fagus sylvatica L.) and Sessile Oak (Quercus petraea (Matt.) Liebl.) Using a Chronosequence Approach. Tree Physiol. 2010, 30, 177–192. [Google Scholar] [CrossRef]
- Taylor, A.R.; Wang, J.R.; Chen, H.Y.H. Carbon Storage in a Chronosequence of Red Spruce (Picea rubens) Forests in Central Nova Scotia, Canada. Can. J. For. Res. 2007, 37, 2260–2269. [Google Scholar] [CrossRef]
- Rothstein, D.E.; Yermakov, Z.; Buell, A.L. Loss and Recovery of Ecosystem Carbon Pools Following Stand-Replacing Wildfire in Michigan Jack Pine Forests. Can. J. For. Res. 2004, 34, 1908–1918. [Google Scholar] [CrossRef]
- Xu, B.; Guo, Z.; Piao, S.; Fang, J. Biomass Carbon Stocks in China’s Forests between 2000 and 2050: A Prediction Based on Forest Biomass-Age Relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef]
- Repo, A.; Rajala, T.; Henttonen, H.M.; Lehtonen, A.; Peltoniemi, M.; Heikkinen, J. Age-Dependence of Stand Biomass in Managed Boreal Forests Based on the Finnish National Forest Inventory Data. For. Ecol. Manag. 2021, 498, 119507. [Google Scholar] [CrossRef]
- Zhao, Z.; Geng, S.; He, X.; Li, K.; Wan, F. Estimation of Storage and Density of Carbon in Forest Vegetation in Qinglong Manchu Autonomous County of Hebei Province from 2005 to 2050. Res. Soil Water Conserv. 2015, 22, 264–268. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Liu, H.; Zhao, F.; Chen, Q.; Ling, C.; Yang, T. Estimation of Carbon Storage and Potential Carbon Sequestration Based on the Second Type Inventory of Forest Resources—A Case Study of Zha’nang County of Tibet Autonomous Region. J. Northwest For. Univ. 2020, 35, 125–131. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, X.; Lei, X.; Huang, H.; Zhou, C.; Peng, C.; Wang, X. Separating Regressions for Model Fitting to Reduce the Uncertainty in Forest Volume-Biomass Relationship. Forests 2019, 10, 658. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.; Zeng, W. Individual Stem Volume Modeling Based on Tree Height and Crown Characteristics. For. Res. 2016, 29, 196–201. [Google Scholar] [CrossRef]
- Wang, B.; Li, M.; Fan, W.; Yu, Y.; Chen, J.M. Relationship between Net Primary Productivity and Forest Stand Age under Different Site Conditions and Its Implications for Regional Carbon Cycle Study. Forests 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Guan, D.; Xiao, L.; Peart, M.R. Forest Biomass-Carbon Variation Affected by the Climatic and Topographic Factors in Pearl River Delta, South China. J. Environ. Manag. 2019, 232, 781–788. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, Q.; Liu, A.; Liu, C.; Xie, G. Effects of Stand Structure and Topography on Forest Vegetation Carbon Density in Jiangxi Province. Forests 2021, 12, 1483. [Google Scholar] [CrossRef]
- Drake, T.W.; Podgorski, D.C.; Dinga, B.; Chanton, J.P.; Six, J.; Spencer, R.G.M. Land-Use Controls on Carbon Biogeochemistry in Lowland Streams of the Congo Basin. Glob. Chang. Biol. 2020, 26, 1374–1389. [Google Scholar] [CrossRef]
- Carter, D.R.; Fahey, R.T.; Dreisilker, K.; Bialecki, M.B.; Bowles, M.L. Assessing Patterns of Oak Regeneration and C Storage in Relation to Restoration-Focused Management, Historical Land Use, and Potential Trade-Offs. For. Ecol. Manag. 2015, 343, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Lan, X.; Du, H.; Song, T.; Zeng, F.; Peng, W.; Liu, Y.; Fan, Z.; Zhang, J. Vegetation Carbon Storage in the Main Forest Types in Guangxi and the Related Influencing Factors. Acta Ecol. Sin. 2019, 39, 2043–2053. [Google Scholar] [CrossRef]
- Scientific Investigation and Biodiversity Research in Jiangxi Lushan Nature Reserve. CNKI. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SNAD&dbname=SNAD&filename=SNAD000001395281&uniplatform=NZKPT&v=TjRX_0fSS4uzUdQ2MR_DCuzPTCm_tohfuAfm3NgoEcPcdgHMR8mb2qwJmGHFSbH3DHFBY1zdRA%3d (accessed on 15 June 2022).
- Hu, H. Evaluation of the Service Value of the Forest Ecosystemin Lushan Mountain Nature Reserve. Resour. Sci. 2007, 5, 28–36. [Google Scholar] [CrossRef]
- Feng, F.; Wang, K. Merging High-Resolution Satellite Surface Radiation Data with Meteorological Sunshine Duration Observations over China from 1983 to 2017. Remote Sens. 2021, 13, 602. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Deng, Y.; Zeng, Q.; Lai, Z.; Liu, J. Spatial Distribution of Soil Organic Carbon Stocks in Masson Pine (Pinus massoniana) Forests in Subtropical China. CATENA 2019, 178, 189–198. [Google Scholar] [CrossRef]
- Mingjin, Z.; Jianmin, Y.; Yizhi, Z. Analysis on Characteristic of Precipitation in Poyang Lake Basin from 1959 to 2008. Procedia Environ. Sci. 2011, 10, 1526–1533. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, J.; Shao, Q.; Xu, X. Carbon Sequestration by Forestation across China: Past, Present, and Future. Renew. Sustain. Energy Rev. 2012, 16, 1291–1299. [Google Scholar] [CrossRef]
- Kangur, A.; Sims, A.; Jõgiste, K.; Kiviste, A.; Korjus, H.; von Gadow, K. Comparative Modeling of Stand Development in Scots Pine Dominated Forests in Estonia. For. Ecol. Manag. 2007, 250, 109–118. [Google Scholar] [CrossRef]
- Zeng, W. Research on Forest Biomass and Productivity in Yunnan. Cent. South For. Invent. Plan. 2005, 24, 1–3. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, J.; Zhao, N.; Liu, Y.; Wang, Y.; Wilson, J.P.; Yue, T. Estimation of China’s Forest Stand Biomass Carbon Sequestration Based on the Continuous Biomass Expansion Factor Model and Seven Forest Inventories from 1977 to 2013. For. Ecol. Manag. 2019, 448, 528–534. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, J.; Yang, W.; Tang, X.; Zhao, A. Dynamics on Forest Carbon Stock in Sichuan Province and Chongqing City. Acta Ecol. Sin. 2008, 3, 966–975. [Google Scholar] [CrossRef]
- Zhang, H. Measurement and Analysis of Carbon Content Rates of Eight Tree Species in Guangdong Province. For. Res. Manag. 2018, 1, 148–154. [Google Scholar] [CrossRef]
- Yin, S.; Gong, Z.; Gu, L.; Deng, Y.; Niu, Y. Driving Forces of the Efficiency of Forest Carbon Sequestration Production: Spatial Panel Data from the National Forest Inventory in China. J. Clean. Prod. 2022, 330, 129776. [Google Scholar] [CrossRef]
- Li, T.; Li, M.-Y.; Tian, L. Dynamics of Carbon Storage and Its Drivers in Guangdong Province from 1979 to 2012. Forests 2021, 12, 1482. [Google Scholar] [CrossRef]
- He, N.; Wen, D.; Zhu, J.; Tang, X.; Xu, L.; Zhang, L.; Hu, H.; Huang, M.; Yu, G. Vegetation Carbon Sequestration in Chinese Forests from 2010 to 2050. Glob. Chang. Biol. 2017, 23, 1575–1584. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Huang, M.; Chang, R.; Ran, F. Forest Biomass Carbon Stocks and Variation in Tibet’s Carbon-Dense Forests from 2001 to 2050. Sci. Rep. 2016, 6, 34687. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Xia, J. Prediction of Forest Carbon Sink Potential in Heilongjiang Province: The Carbon Density-age Relationship-based Approach. Res. Environ. Sci. 2017, 30, 552–558. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, W.; Chen, J.; Fang, M.; Wu, M.; Chang, X.; Wang, T.; Wang, X. Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050. Forests 2018, 9, 689. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Lei, X.; Liu, C.; Huang, H.; Zhou, C.; Peng, C. Re-Estimating the Changes and Ranges of Forest Biomass Carbon in China during the Past 40 Years. For. Ecosyst. 2019, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, S.; Guo, Z.; Xu, B.; Fang, J. The Stage-Classified Matrix Models Project a Significant Increase in Biomass Carbon Stocks in China’s Forests between 2005 and 2050. Sci. Rep. 2015, 5, 11203. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Zhou, T.; Zou, Z.; Zhao, X.; Huang, K.; Wu, H. Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China. Forests 2014, 5, 1267–1283. [Google Scholar] [CrossRef] [Green Version]
- Weiskittel, A.R.; MacFarlane, D.W.; Radtke, P.J.; Affleck, D.L.R.; Temesgen, H.; Woodall, C.W.; Westfall, J.A.; Coulston, J.W. A Call to Improve Methods for Estimating Tree Biomass for Regional and National Assessments. J. For. 2015, 113, 414–424. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Meng, S.; Zhou, G.; Liu, Q.; Xu, Z. Uncertainties in above Ground Tree Biomass Estimation. J. For. Res. 2021, 32, 1989–2000. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, X.; Liu, Q. Carbon Storage of Forest Vegetation and Its Geographical Pattern in China’s Jiangxi Province during 2001–2005. J. Nat. Res. 2011, 26, 655–665. [Google Scholar]
- Wu, G.; Tang, X.; Ruan, Y.; Luo, X. Carbon storage and carbon sequestration potential based on forest inventory data in Jiangxi Province, China. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2019, 43, 105–110. [Google Scholar] [CrossRef]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon Sequestration Potential of Forest Vegetation in China from 2003 to 2050: Predicting Forest Vegetation Growth Based on Climate and the Environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Wu, D.; Shao, Q.; Liu, J.; Huang, L. Spatio-temporal Dynamics of Forest Carbon Storage in Taihe County of Jiangxi Province in 1985–2030. J. Appli. Eco. 2011, 22, 41–46. [Google Scholar] [CrossRef]
- Li, J.; Shao, Q.; Liu, J. Characteristics of Spatio-temporal Dynamics Changes of the Carbon Storage of Forest Vegetation in Xingguo County. J. Northwest For. Univ. 2012, 27, 163–168+174. [Google Scholar] [CrossRef]
- Jiyou, C.; Xin, X.U.; Xiaoyong, L.I.U. Analysis on the Main Results and Dynamic Changes of the Ninth Forest Resources Inventory in Jiangxi. For. Resour. Manag. 2018, 0, 18–23. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, J. Carbon Storage and Carbon Sequestration Potential of the Forest in China. Clim. Chang. Res. 2018, 14, 287. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, J.; Niu, S.; Chu, C.; Luo, Y. Limits to Growth of Forest Biomass Carbon Sink under Climate Change. Nat. Commun. 2018, 9, 2709. [Google Scholar] [CrossRef] [Green Version]
- Luyssaert, S.; Schulze, E.-D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-Growth Forests as Global Carbon Sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Wu, D.; Shao, Q.; Li, J. Effects of Afforestation on Carbon Storage in Boyang Lake Basin, China. Chin. Geogr. Sci. 2013, 23, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yu, G.; Ge, J.; Sun, X.; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang, J.; et al. Temperature and Precipitation Control of the Spatial Variation of Terrestrial Ecosystem Carbon Exchange in the Asian Region. Agric. For. Meteorol. 2013, 182–183, 266–276. [Google Scholar] [CrossRef]
Forest Type | Main Dominant Tree Species | Model Parameters | Carbon Conversion Coefficients | ||
---|---|---|---|---|---|
References | |||||
PF | Pinus massoniana | 0.520 | 0 | 0.544 | [40] |
Other pine species such as Pinus elliottii | 0.517 | 33.238 | |||
CFF | Cunninghamia lanceolata | 0.399 | 22.540 | 0.555 | [40] |
Cryptomeria japonica, Metasequoia glyptostroboides | 0.416 | 41.332 | |||
Cupressus funebris | 0.613 | 26.145 | |||
BLH | Quercus L. | 1.145 | 8.547 | 0.522 | [40] |
Cinnamomum camphora | 1.036 | 8.059 | |||
Other hard and broad categories | 0.756 | 8.310 | |||
BLS | Populus L., Paulownia fortunei and etc. | 0.475 | 30.603 | 0.521 | [40] |
MCF | - | 0.589 | 24.515 | 0.528 | [39] |
MBF | - | 0.839 | 9.416 | 0.511 | [39] |
MCBF | - | 0.802 | 12.280 | 0.494 | [39] |
Portfolio Feature Type | Single Factor | Portfolio Features |
---|---|---|
Site Characteristics | Mean elevation (ELE), Slope direction (SD), Slope gradient (SG), Soil thickness (ST), Humus thickness (HT) | |
Stand Characteristics | Forest density (FD), Vegetation cover (VC), Canopy density (CD) | |
Climate Characteristics | Precipitation (PRE), Radiation (RAD), Temperature (TEM) |
Model Type | Forest Type | |||||||
---|---|---|---|---|---|---|---|---|
PF | CFF | BLS | BLH | MCF | MBF | MCBF | ||
Binary standing volume model | a0 | 7.695 × 10−5 | 6.445 × 10−5 | 7.199 × 10−5 | 9.161 × 10−5 | 7.642 × 10−5 | 1.086 × 10−4 | 1.081 × 10−4 |
a1 | 1.953 | 1.939 | 1.953 | 1.981 | 1.969 | 1.884 | 1.892 | |
a2 | 0.821 | 0.906 | 0.898 | 0.757 | 0.821 | 0.767 | 0.758 | |
R2 | 0.934 | 0.957 | 0.891 | 0.906 | 0.932 | 0.933 | 0.950 | |
RMSE | 0.013 | 0.022 | 0.039 | 0.035 | 0.012 | 0.018 | 0.012 | |
DBH growth model | c0 | 1.059 | 0.972 | 0.917 | 1.237 | 1.237 | 1.170 | 1.243 |
c1 | 44.533 | 6.218 | 10.829 | 8.026 | 14.709 | 9.276 | 42.803 | |
c2 | 6.249 | 4.929 | 6.345 | 3.135 | 4.193 | 3.920 | 5.265 | |
R2 | 0.898 | 0.845 | 0.853 | 0.855 | 0.973 | 0.926 | 0.799 | |
RMSE | 0.107 | 0.110 | 0.119 | 0.317 | 0.045 | 0.076 | 0.130 | |
Tree height growth model | c0 | 0.997 | 0.927 | 0.887 | 0.940 | 1.086 | 1.177 | 1.317 |
c1 | 8.295 | 6.262 | 14.930 | 8.592 | 13.439 | 11.052 | 8.106 | |
c2 | 5.119 | 5.496 | 9.421 | 5.279 | 5.253 | 3.823 | 3.143 | |
R2 | 0.941 | 0.915 | 0.881 | 0.937 | 0.969 | 0.968 | 0.910 | |
RMSE | 0.076 | 0.084 | 0.118 | 0.074 | 0.051 | 0.051 | 0.072 | |
Model for growth of average plant volume | c0 | 0.199 | 0.237 | 0.242 | 0.336 | 0.328 | 0.217 | 0.258 |
c1 | 19.486 | 30.880 | 6.591 | 8.510 | 18.997 | 13.711 | 13.693 | |
c2 | 0.089 | 0.104 | 0.092 | 0.046 | 0.072 | 0.075 | 0.063 | |
R2 | 0.991 | 0.997 | 0.988 | 0.999 | 0.996 | 0.994 | 0.995 | |
RMSE | 0.006 | 0.003 | 0.006 | 0.002 | 0.006 | 0.005 | 0.005 |
Forest Type | Forest Volume (×104 m³) | Forest Volume Density (m³/ha) | Tree Biomass (×104 t) | Forest Carbon Stock (×104 t) | Forest Carbon Density (t/ha) | Forest Single-Year Carbon Sink (×103 t/a) | Forest Carbon Intensity Growth (t/ha/a) |
---|---|---|---|---|---|---|---|
PF | 89.617 | 78.007 | 56.558 | 30.784 | 26.796 | 12.291 | 1.070 |
CFF | 60.795 | 123.397 | 37.211 | 20.660 | 41.933 | 4.653 | 0.944 |
BLH | 4.777 | 91.650 | 5.008 | 2.615 | 50.181 | 0.614 | 1.179 |
BLS | 4.976 | 99.408 | 3.897 | 2.029 | 40.543 | 0.372 | 0.744 |
MCF | 35.161 | 70.012 | 33.022 | 17.442 | 34.730 | 5.893 | 1.173 |
MBF | 16.705 | 80.809 | 15.966 | 8.159 | 39.457 | 2.784 | 1.347 |
MCBF | 22.072 | 75.560 | 21.287 | 10.509 | 35.976 | 3.619 | 1.239 |
Overall | 234.103 | 85.291 | 172.948 | 92.197 | 33.590 | 30.227 | 1.101 |
Study Area | Survey Time | Status Quo Carbon Density of Different Forest Types (t C/ha) | Average Carbon Density (t C/ha) | Predicted Year Carbon Density (t C/ha) | References | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PF | CFF | BLH | BLS | MCF | MBF | MCBF | 2020 | 2030 | 2040 | 2050 | ||||
Lushan City | 2019 | 26.8 | 41.93 | 50.18 | 40.54 | 34.73 | 39.45 | 35.98 | 33.59 | 34.69 | 46.61 | 58.49 | 68.04 | This study |
Taihe County, Jiangxi Province | 2003 | Pinus massoniana 13.76 Pinus elliottii 37.8 | 29.09 | 32.46 | 33.68 | 27.79 | 26.31 | 35.91 | 40.37 | - | - | [55] | ||
Xingguo County, Jiangxi Province | 2003 | Pinus massoniana 13.28 Pinus elliottii 36.89 | 24.65 | 59.96 | 44.23 | 44.94 | 18.25 | - | [56] | |||||
The whole of Jiangxi | 2001–2005 | Pinus massoniana 14.89 Foreign pine 37.68 | 29.51 | 42.64 | 32.3 | 33 | 27.2 | - | [52] | |||||
The whole of Jiangxi | 2011 | Pinus massoniana 9.69 Pinus elliottii 8.49 | 20.77 | 16.18 | 21.25 | 27.05 | 35.46 | 26.25 | 23.87 | - | [53] | |||
The whole of Jiangxi | 2016 | 34.54 | 33.16 | - | - | 43.11 | 54.51 | 40.69 | 36 | - | [24] | |||
The whole of Jiangxi | 2013 | - | 28.95 | 30.39 | - | - | 40.55 | [54] | ||||||
Entire Jiangxi/National | 2010 | - | 20.68 | 41.76 | 45.81 | 48.55 | 52.52 | [58] | ||||||
National | 2010 | - | - | 50.51 | 58.17 | 63.73 | 67.84 | [46] | ||||||
National | 2000 | - | - | 59.8 | 65.1 | 68.9 | 71.7 | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, G.; Zhang, Z.; Zhu, Q.; Wang, W.; Peng, W.; Cai, Y. Estimating Carbon Sequestration Potential of Forest and Its Influencing Factors at Fine Spatial-Scales: A Case Study of Lushan City in Southern China. Int. J. Environ. Res. Public Health 2022, 19, 9184. https://doi.org/10.3390/ijerph19159184
He G, Zhang Z, Zhu Q, Wang W, Peng W, Cai Y. Estimating Carbon Sequestration Potential of Forest and Its Influencing Factors at Fine Spatial-Scales: A Case Study of Lushan City in Southern China. International Journal of Environmental Research and Public Health. 2022; 19(15):9184. https://doi.org/10.3390/ijerph19159184
Chicago/Turabian StyleHe, Geng, Zhiduo Zhang, Qing Zhu, Wei Wang, Wanting Peng, and Yongli Cai. 2022. "Estimating Carbon Sequestration Potential of Forest and Its Influencing Factors at Fine Spatial-Scales: A Case Study of Lushan City in Southern China" International Journal of Environmental Research and Public Health 19, no. 15: 9184. https://doi.org/10.3390/ijerph19159184
APA StyleHe, G., Zhang, Z., Zhu, Q., Wang, W., Peng, W., & Cai, Y. (2022). Estimating Carbon Sequestration Potential of Forest and Its Influencing Factors at Fine Spatial-Scales: A Case Study of Lushan City in Southern China. International Journal of Environmental Research and Public Health, 19(15), 9184. https://doi.org/10.3390/ijerph19159184