Safety Assessment on Serious Adverse Events of Targeted Therapeutic Agents Prescribed for RAS Wild-Type Metastatic Colorectal Cancer: Systematic Review and Network Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection and Data Extraction
2.3. Assessment of Bias Risk and Evidence
2.4. Statistical Methods
3. Results
3.1. Study Search and Selection
3.2. Eligible Study Characteristics
3.3. Safety Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K.E. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers 2021, 13, 2025. [Google Scholar] [CrossRef]
- Brenner, H.; Jansen, L.; Ulrich, A.; Chang-Claude, J.; Hoffmeister, M. Survival of patients with symptom- and screening-detected colorectal cancer. Oncotarget 2016, 7, 44695–44704. [Google Scholar] [CrossRef] [Green Version]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Guidelines Version 1. 2022. Colon Cancer. Available online: www.nccn.org (accessed on 3 June 2022).
- Hasbullah, H.H.; Musa, M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int. J. Mol. Sci. 2021, 22, 11941. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Ma, X.; Tan, L.; Yan, Y.; Xue, C.; Hui, B.; Liu, R.; Ma, H.; Ren, J. A Review of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. Int. J. Mol. Sci. 2016, 12, 1022–1031. [Google Scholar] [CrossRef]
- Lei, S.; Zhang, X.; Men, K.; Gao, Y.; Yang, X.; Wu, S.; Duan, X.; Wei, Y.; Tong, R. Efficient Colorectal Cancer Gene Therapy with IL-15 mRNA Nanoformulation. Mol. Pharm. 2020, 17, 3378–3391. [Google Scholar] [CrossRef]
- Asadi, Z.; Fathi, M.; Rismani, E.; Bigdelou, Z.; Johari, B. Application of decoy oligodeoxynucleotides strategy for inhibition of cell growth and reduction of metastatic properties in nonresistant and erlotinib-resistant SW480 cell line. Cell Biol. Int. 2021, 45, 1001–1014. [Google Scholar] [CrossRef]
- Bigdelou, Z.; Mortazavi, Y.; Saltanatpour, Z.; Asadi, Z.; Kadivar, M.; Johari, B. Role of Oct4-Sox2 complex decoy oligodeoxynucleotides strategy on reverse epithelial to mesenchymal transition (EMT) induction in HT29-ShE encompassing enriched cancer stem-like cells. Mol. Biol. Rep. 2020, 47, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Bai, L.; Liu, T.S.; Yu, Y.Y.; He, M.M.; Liu, K.Y.; Luo, H.Y.; Zhang, D.S.; Jin, Y.; Wang, F.H.; et al. Right-sided colon cancer and left-sided colorectal cancers respond differently to cetuximab. Chin. J. Cancer 2015, 34, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Yu, Q.; Ning, R.; Zhao, W.; Wei, C. Efficacy of bevacizumab versus epidermal growth factor receptor inhibitors for wild-type RAS metastatic colorectal cancer: A meta-analysis. OncoTargets Ther. 2018, 11, 4271–4281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Ito, H.; Sato, N.; Hirayama, Y.; Kusakabe, T.; Terui, T.; Ishitani, K. Clinical factors associated with the therapeutic outcome of chemotherapy in very elderly cancer patients. Int. J. Clin. Oncol. 2019, 24, 596–601. [Google Scholar] [CrossRef]
- Du, R.; Wang, X.; Ma, L.; Larcher, L.M.; Tang, H.; Zhou, H.; Chen, C.; Wang, T. Adverse reactions of targeted therapy in cancer patients: A retrospective study of hospital medical data in China. BMC Cancer 2021, 21, 206. [Google Scholar] [CrossRef] [PubMed]
- Ramasubbu, S.K.; Pasricha, R.K.; Nath, U.K.; Rawat, V.S.; Das, B. Quality of life and factors affecting it in adult cancer patients undergoing cancer chemotherapy in a tertiary care hospital. Cancer Rep. 2021, 4, e1312. [Google Scholar] [CrossRef] [PubMed]
- Gerber, D.E. Targeted therapies: A new generation of cancer treatments. Am. Fam. Phys. 2008, 77, 311–319. [Google Scholar]
- Alomar, M.J. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm. J. 2014, 22, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Ingrand, I.; Defossez, G.; Lafay-Chebassier, C.; Chavant, F.; Ferru, A.; Ingrand, P.; Pérault-Pochat, M.C. Serious adverse effects occurring after chemotherapy: A general cancer registry-based incidence survey. Br. J. Clin. Pharmacol. 2020, 86, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 2 March 2022).
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Current Version of RoB2. Available online: https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/current-version-of-rob-2?authuser=0 (accessed on 22 June 2022).
- Marotta, N.; Demeco, A.; Moggio, L.; Marinaro, C.; Pino, I.; Barletta, M.; Petraroli, A.; Pepe, D.; Lavano, F.; Ammendolia, A. Comparative effectiveness of breathing exercises in patients with chronic obstructive pulmonary disease. Complementary Ther. Clin. Pract. 2020, 41, 101260. [Google Scholar] [CrossRef]
- Doing Meta-Analysis in R: A Hands on-Guide. Network Meta-Analysis. Available online: https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/netwma.html (accessed on 2 March 2022).
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Jackson, D.; Barrett, J.K.; Lu, G.; Ades, A.E.; White, I.R. Consistency and inconsistency in network meta-analysis: Concepts and models for multi-arm studies. Res. Synth. Methods 2012, 3, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Rücker, G.; Schwarzer, G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res. Methodol. 2015, 15, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oki, E.; Emi, Y.; Yamanaka, T.; Uetake, H.; Muro, K.; Takahashi, T.; Nagasaka, T.; Hatano, E.; Ojima, H.; Manaka, D.; et al. Randomised phase II trial of mFOLFOX6 plus bevacizumab versus mFOLFOX6 plus cetuximab as first-line treatment for colorectal liver metastasis (ATOM trial). Br. J. Cancer 2019, 121, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Venook, A.P.; Niedzwiecki, D.; Lenz, H.J.; Innocenti, F.; Fruth, B.; Meyerhardt, J.A.; Schrag, D.; Greene, C.; O’Neil, B.H.; Atkins, J.N.; et al. Effect of First-Line Chemotherapy Combined with Cetuximab or Bevacizumab on Overall Survival in Patients with KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2017, 317, 2392–2401. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; Lerchenmüller, C.; Kahl, C.; Seipelt, G.; et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1065–1075. [Google Scholar] [CrossRef]
- Schwartzberg, L.S.; Rivera, F.; Karthaus, M.; Fasola, G.; Canon, J.L.; Hecht, J.R.; Yu, H.; Oliner, K.S.; Go, W.Y. PEAK: A randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J. Clin. Oncol. 2014, 32, 2240–2247. [Google Scholar] [CrossRef]
- Bennouna, J.; Hiret, S.; Bertaut, A.; Bouché, O.; Deplanque, G.; Borel, C.; François, E.; Conroy, T.; Ghiringhelli, F.; des Guetz, G.; et al. Continuation of Bevacizumab vs Cetuximab Plus Chemotherapy after First Progression in KRAS Wild-Type Metastatic Colorectal Cancer: The UNICANCER PRODIGE18 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Hecht, J.R.; Cohn, A.; Dakhil, S.; Saleh, M.; Piperdi, B.; Cline-Burkhardt, M.; Tian, Y.; Go, W.Y. SPIRITT: A Randomized, Multicenter, Phase II Study of Panitumumab with FOLFIRI and Bevacizumab with FOLFIRI as Second-Line Treatment in Patients with Unresectable Wild Type KRAS Metastatic Colorectal Cancer. Clin. Color. Cancer 2015, 14, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Yonesaka, K.; Denda, T.; Yamazaki, K.; Moriwaki, T.; Tsuda, M.; Takano, T.; Okuda, H.; Nishina, T.; Sakai, K.; et al. Randomized study of FOLFIRI plus either panitumumab or bevacizumab for wild-type KRAS colorectal cancer-WJOG 6210G. Cancer Sci. 2016, 107, 1843–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, D.; Taniguchi, H.; Sugimoto, N.; Tamura, T.; Nishina, T.; Hara, H.; Esaki, T.; Denda, T.; Sakamoto, T.; Okuda, H.; et al. Randomised phase II study of panitumumab plus irinotecan versus cetuximab plus irinotecan in patients with KRAS wild-type metastatic colorectal cancer refractory to fluoropyrimidine, irinotecan and oxaliplatin (WJOG 6510G). Eur. J. Cancer 2020, 135, 11–21. [Google Scholar] [CrossRef]
- Fakih, M.; Vincent, M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr. Oncol. 2010, 17 (Suppl. 1), S18–S30. [Google Scholar] [CrossRef] [Green Version]
- Totzeck, M.; Mincu, R.I.; Rassaf, T. Cardiovascular Adverse Events in Patients with Cancer Treated with Bevacizumab: A Meta-Analysis of More Than 20 000 Patients. J. Am. Hear. Assoc. 2017, 6, e006278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.N.; Choi, Y.J.; Rhie, S.J. Tolerability on Serious Adverse Events of First-Line Bevacizumab and Cetuximab for RAS Wild-Type Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 217. [Google Scholar] [CrossRef]
- Miroddi, M.; Sterrantino, C.; Simmonds, M.; Caridi, L.; Calapai, G.; Phillips, R.S.; Stewart, L.A. Systematic review and meta-analysis of the risk of severe and life-threatening thromboembolism in cancer patients receiving anti-EGFR monoclonal antibodies (cetuximab or panitumumab). Int. J. Cancer 2016, 139, 2370–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandén, P.; Svensson, P.J.; Själander, A. Venous thromboembolism and cancer risk. J. Thromb. Thrombolysis 2017, 43, 68–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyman, G.H.; Eckert, L.; Wang, Y.; Wang, H.; Cohen, A. Venous thromboembolism risk in patients with cancer receiving chemotherapy: A real-world analysis. Oncologist 2013, 18, 1321–1329. [Google Scholar] [CrossRef] [Green Version]
- Anderson, F.A., Jr.; Spencer, F.A. Risk factors for venous thromboembolism. Circulation 2003, 107, I9–I16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorana, A.A.; Connolly, G.C. Assessing risk of venous thromboembolism in the patient with cancer. J. Clin. Oncol. 2009, 27, 4839–4847. [Google Scholar] [CrossRef]
- Muñoz Martín, A.J.; Ramírez, S.P.; Morán, L.O.; Zamorano, M.R.; Benéitez, M.C.V.; Salcedo, I.A.; Escobar, I.G.; Fernández, J.M.S. Pharmacological cancer treatment and venous thromboembolism risk. Eur. Hear. J. Suppl. 2020, 22, C2–C14. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Cabiddu, M.; Borgonovo, K.; Barni, S. Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: A meta-analysis of randomized clinical trials. Ann. Oncol. 2012, 23, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Perrotte, P.; Matsumoto, T.; Inoue, K.; Kuniyasu, H.; Eve, B.Y.; Hicklin, D.J.; Radinsky, R.; Dinney, C.P. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 1999, 5, 257–265. [Google Scholar]
- Grover, S.P.; Hisada, Y.M.; Kasthuri, R.S.; Reeves, B.N.; Mackman, N. Cancer Therapy-Associated Thrombosis. Arter. Thromb. Vasc. Biol. 2021, 41, 1291–1305. [Google Scholar] [CrossRef]
- Alahmari, A.K.; Almalki, Z.S.; Alahmari, A.K.; Guo, J.J. Thromboembolic Events Associated with Bevacizumab plus Chemotherapy for Patients with Colorectal Cancer: A Meta-Analysis of Randomized Controlled Trials. Am. Health Drug Benefits 2016, 9, 221–232. [Google Scholar]
- Brown, T.J.; Gupta, A. Management of Cancer Therapy-Associated Oral Mucositis. JCO Oncol. Pr. 2020, 16, 103–109. [Google Scholar] [CrossRef]
- Li, J.; Xie, J. Mucositis with anti-EGFR monoclonal antibody in cancer patients: A meta-analysis of randomized controlled trials. Jpn J. Clin. Oncol. 2018, 48, 718–727. [Google Scholar] [CrossRef]
- Dote, S.; Itakura, S.; Kamei, K.; Hira, D.; Noda, S.; Kobayashi, Y.; Terada, T. Oral mucositis associated with anti-EGFR therapy in colorectal cancer: Single institutional retrospective cohort study. BMC Cancer 2018, 18, 957. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.C.; Wu, C.F.; Chen, C.W.; Shi, C.S.; Huang, W.S.; Kuan, F.C. Hypomagnesemia and clinical benefits of anti-EGFR monoclonal antibodies in wild-type KRAS metastatic colorectal cancer: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardi, R.; Torniai, M.; Lenci, E.; Pecci, F.; Morgese, F.; Rinaldi, S. Electrolyte disorders in cancer patients: A systematic review. J. Cancer Metastasis Treat. 2019, 5, 79. [Google Scholar] [CrossRef]
- Binotto, M.; Reinert, T.; Werutsky, G.; Zaffaroni, F.; Schwartsmann, G. Health-related quality of life before and during chemotherapy in patients with early-stage breast cancer. Ecancermedicalscience 2020, 14, 1007. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Callejero, B.; Rivera, F.; Fagundo-Rivera, J.; Romero, A.; Romero-Martín, M.; Gómez-Salgado, J.; Ruiz-Frutos, C. Relationship between chemotherapy-induced adverse reactions and health-related quality of life in patients with breast cancer. Medicine 2020, 99, e21695. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.N.; Hechmati, G.; Fakih, M.G.; Knox, H.N.; Maglinte, G.A.; Hjelmgren, J.; Barber, B.; Schwartzberg, L.S. Cost-minimization analysis of panitumumab compared with cetuximab for first-line treatment of patients with wild-type RAS metastatic colorectal cancer. J. Med. Econ. 2015, 18, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.N.; Maglinte, G.A.; Schwartzberg, L.S.; Price, T.J.; Knox, H.N.; Hechmati, G.; Hjelmgren, J.; Barber, B.; Fakih, M.G. Economic Analysis of Panitumumab Compared with Cetuximab in Patients with Wild-type KRAS Metastatic Colorectal Cancer That Progressed after Standard Chemotherapy. Clin. Ther. 2016, 38, 1376–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Criteria |
---|---|
P: Patients | Patients diagnosed with RAS wild-type metastatic CRC who administered the intervention or the comparator as first or second-line treatment |
I: Intervention | Bevacizumab + classical CRC chemotherapy |
C: Comparison | Cetuximab + classical CRC chemotherapy Panitumumab + classical CRC chemotherapy |
O: Outcomes | SAE (Grade 3–4) per CTCAE Hematological SAE: anemia, febrile neutropenia, neutropenia, infection, thrombocytopenia CV SAE: hypertension, thromboembolism Dermatological SAE: skin toxicity (dermatitis or rash), paronychia, mucositis/stomatitis GI SAE: anorexia, nausea, vomiting, diarrhea Renal SAE: electrolyte abnormalities, proteinuria, dehydration Neurological SAE: peripheral neuropathy and fatigue |
S: Study design | Randomized Controlled Trials |
Study Name | Study Duration | Country | Study Design | Patient Population | Intervention | Comparator | Backbone Chemotherapy |
---|---|---|---|---|---|---|---|
First-Line (Treatment naïve) | |||||||
ATOM (Oki2019) | May 2013–April 2016 | Japan | Multicenter, randomized phase II study | Patients aged between 20 and 80 years with liver-limited metastases from wild-type (K) RAS CRC | Bevacizumab (5 mg/kg) (n = 57) | Cetuximab (400 mg/m2 first dose followed by 2400 mg/m2 on Day 1 through Day 2) (n = 59) | mFOLFOX6 |
CALGB 80,405 (Venook 2017) | November 2005–March 2012 | United States and Canada | Multicenter, randomized, phase III study | Patients aged ≥ 18 years with previously untreated advanced or metastatic colorectal cancer whose tumors were KRAS WT | Bevacizumab (5 mg/kg) (n = 559) | Cetuximab (400 mg/m2 followed by 250 mg/m2) (n = 578) | mFOLFOX6 or FOLFIRI |
FIRE-3 (Heinemann 2014) | 23 January 2007–19 September 2012 | Germany, Austria | Randomized, open-label, Phase 3 trial | Age 18–75 years with stage IV, histologically confirmed adenocarcinoma of the colon or rectum, ECOG performance status of 0–2, an estimated life expectancy of greater than 3 months and adequate organ function, and no surgery within 4 weeks before the study | Bevacizumab (5 mg/kg) (n = 295) | Cetuximab (400 mg/m2 on Day 1 and 250 mg/m2 weekly) (n = 297) | FOLFIRI |
PEAK (Schwartzberg 2014) | April 2009 and December 2011 | Phase II multicenter, open-label, randomized two-arm study | Age ≥ 18 years, ECOG performance of 0 or 1, histologically or cytologically confirmed metastatic adenocarcinoma of the colon or rectum with unresectable metastatic disease, WT KRAS exon2 (codons 12 and 13) | bevacizumab 5 mg/kg every two weeks (n = 143) | panitumumab 6 mg/kg every 2 weeks (n = 142) | mFOLFOX6 | |
Second-Line | |||||||
SPIRITT (Hechet 2015) | November 2006–December 2010 | United States | Randomized, phase II | Age ≥ 18, ECOG performance score of 0 or 1, had histologically or cytologically confirmed metastatic adenocarcinoma of the colon or rectum. Failed previous first-line oxaliplatin-based chemotherapy with bevacizumab | Bevacizumab 5 mg/kg (n = 91) | Panitumumab 6 mg/kg (n = 91) | FOLFIRI |
WJOG 6210G (Shitara 2016) | April 2011 and Febrary 2014 | Japan | Randomized phase II trial | Histopathologically proven unresectable distant metastatic or locally advanced colorectal adenocarcinoma, presence of radiographically confirmed or clinically diagnosed disease progression during or within 3 months after the last dose of first-line chemotherapy containing fluoropyrimidine, oxaliplatin, and bevacizumab, and confirmation of WT KRAS exon2 (codon 12 or 13) | Bevacizumab 5 mg/kg (n = 60) | Panitumumab 6 mg/kg (n = 61) | FOLFIRI |
WJOG6510G (Sakai 2020) | December 2011–September 2014 | Japan | Open-label, randomized, multicenter, phase II study | Histopathologically confirmed unresectable mCRC; failure of prior chemotherapy with fluorouracil-, oxaliplatin, and irinotecan-based therapy, wild-type KRAS exon2 based on the test at the local institution; age ≥ 20 years; PS ≤ 2 | Panitumumab 6 mg/kg (n = 61) | Cetuximab 400 mg/m2 followed by 250 mg/m2 (n = 59) | Irinotecan |
PRODIGE18 (Bennouna 2019) | 14 December 2010–5 May 2015 | France | Prospective, open-label, multicenter, randomized phase 2 trial | Patients 18 years of age or older, with Eastern Cooperative Oncology Group performance status of 0 or 1, histologically or cytologically proven mCRC, and with WT KRAS exon2. First-line treatment of mCRC with bevacizumab plus fluoropyrimidines and irinotecan or oxaliplatin | Bevacizumab(5 mg/kg) (n = 65) | Cetuximab (500 mg/m2) (n = 67) | FOLFIRI mFOLFOX |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.J.; Choi, C.-Y.; Rhie, S.J.; Shin, S. Safety Assessment on Serious Adverse Events of Targeted Therapeutic Agents Prescribed for RAS Wild-Type Metastatic Colorectal Cancer: Systematic Review and Network Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9196. https://doi.org/10.3390/ijerph19159196
Choi YJ, Choi C-Y, Rhie SJ, Shin S. Safety Assessment on Serious Adverse Events of Targeted Therapeutic Agents Prescribed for RAS Wild-Type Metastatic Colorectal Cancer: Systematic Review and Network Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(15):9196. https://doi.org/10.3390/ijerph19159196
Chicago/Turabian StyleChoi, Yeo Jin, Chang-Young Choi, Sandy Jeong Rhie, and Sooyoung Shin. 2022. "Safety Assessment on Serious Adverse Events of Targeted Therapeutic Agents Prescribed for RAS Wild-Type Metastatic Colorectal Cancer: Systematic Review and Network Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 15: 9196. https://doi.org/10.3390/ijerph19159196
APA StyleChoi, Y. J., Choi, C. -Y., Rhie, S. J., & Shin, S. (2022). Safety Assessment on Serious Adverse Events of Targeted Therapeutic Agents Prescribed for RAS Wild-Type Metastatic Colorectal Cancer: Systematic Review and Network Meta-Analysis. International Journal of Environmental Research and Public Health, 19(15), 9196. https://doi.org/10.3390/ijerph19159196