Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China
Abstract
:1. Introduction
2. Literature Review
3. Evaluation Index System for Green Development Performance
3.1. Evaluation Index System for Green Development Level
3.2. Evaluation Index System for Green Development Efficiency
4. Materials and Methods
4.1. Study Area: Yangtze River Economic Belt
4.2. Methods
4.2.1. Entropy Weight TOPSIS
4.2.2. Super-EBM Model
4.2.3. Exploratory Spatial Data Analysis (ESDA)
4.2.4. Geographic Detector (GD)
4.3. Data Sources
5. Results
5.1. Spatiotemporal Characteristics of Green Development Performance
5.1.1. Green Development Level
5.1.2. Green Development Efficiency
5.2. Analysis of Factors Influencing Green Development Performance
5.2.1. Green Development Level
5.2.2. Green Development Efficiency
6. Conclusions and Discussions
6.1. Conclusions
6.2. Discussions
6.3. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Chen, L.; Li, Y. Digital economy and urban low-carbon sustainable development: The role of innovation factor mobility in China. Environ. Sci. Pollut. Res. Int. 2022, 29, 48539–48557. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, D. Spatio-temporal evolution of ecological environment quality in China from a concept of strong sustainability. Environ. Sci. Pollut. Res. Int. 2022, 29, 28769–28787. [Google Scholar] [CrossRef]
- Wendling, Z.; Emerson, J.W.; Sherbinin, A.D.; Esty, D.C. Environmental Performance Index; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2022; Available online: https://epi.yale.edu/ (accessed on 8 June 2022).
- Zhu, B.; Zhang, M.; Huang, L.; Wang, P.; Su, B.; Wei, Y.-M. Exploring the effect of carbon trading mechanism on China’s green development efficiency: A novel integrated approach. Energy Econ. 2020, 85, 104601. [Google Scholar] [CrossRef]
- Sun, J.; Tang, D.; Kong, H.; Boamah, V. Impact of Industrial Structure Upgrading on Green Total Factor Productivity in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2022, 19, 3718. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Bi, L.; Zhu, K. Study on Spatial-Temporal Change of Urban Green Space in Yangtze River Economic Belt and Its Driving Mechanism. Int. J. Environ. Res. Public Health 2021, 18, 12498. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, Y.; Rao, C. Evaluation index system design and coordinated development analysis for the industrial green development system and regional non-waste system in the Yangtze River Economic Zone. Environ. Sci. Pollut. Res. Int. 2021, 28, 32592–32608. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, L.; Chen, W.; Wu, C. Research on the coordination characteristics and interaction between the innovation-driven development and green development of the Yangtze River Economic Belt in China. Environ. Sci. Pollut. Res. Int. 2022, 29, 22952–22969. [Google Scholar] [CrossRef]
- Zhang, Z.; Ou, G.; Elshkaki, A.; Liu, R. Evaluation of Regional Carrying Capacity under Economic-Social-Resource-Environment Complex System: A Case Study of the Yangtze River Economic Belt. Sustainability 2022, 14, 7117. [Google Scholar] [CrossRef]
- Kim, S.E.; Kim, H.; Chae, Y. A new approach to measuring green growth: Application to the OECD and Korea. Futures 2014, 63, 37–48. [Google Scholar] [CrossRef]
- Pan, X.; Li, J.; Wei, J.; Yue, Y.; Liu, L. Measuring green development level at a regional scale: Framework, model, and application. Environ. Monit. Assess. 2022, 194, 343. [Google Scholar] [CrossRef]
- Hou, D.; Wang, X. Measurement of Agricultural Green Development Level in the Three Provinces of Northeast China Under the Background of Rural Vitalization Strategy. Front. Public Health 2022, 10, 824202. [Google Scholar] [CrossRef]
- Xue, H.; Lan, X.; Zhang, Q.; Liang, H.; He, Z. Assessment of the green development level for participating countries in the Belt and Road initiative. Ann. Oper. Res. 2021, 1–21. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Long, R.; Liu, B.; Jiang, S.; Yang, X.; Yang, M. Evaluating green development level of mineral resource-listed companies: Based on a “dark green” assessment framework. Resour. Policy 2021, 71, 102012. [Google Scholar] [CrossRef]
- Wang, G.; Yang, D.; Xiong, C. Dynamic Evaluation and Spatial Distribution Characteristics of Agricultural Green Development Level in Restricted Development Areas: A Case Study of Yili River Valley, China. Pol. J. Environ. Stud. 2021, 30, 4255–4266. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Yang, M. The effects of environmental regulation on China’s total factor productivity: An empirical study of carbon-intensive industries. J. Clean. Prod. 2018, 179, 325–334. [Google Scholar] [CrossRef]
- Song, M.; Du, J.; Tan, K.H. Impact of fiscal decentralization on green total factor productivity. Int. J. Prod. Econ. 2018, 205, 359–367. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, C.; Yang, Q. How Regional Integration Affects Urban Green Development Efficiency: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River. Int. J. Environ. Res. Public Health 2022, 19, 7937. [Google Scholar] [CrossRef]
- Yuan, H.X.; Zou, L.H.; Feng, Y.D.; Huang, L. Does manufacturing agglomeration promote or hinder green development efficiency? Evidence from Yangtze River Economic Belt, China. Environ. Sci. Pollut. Res. 2022, 1–22. [Google Scholar] [CrossRef]
- Yang, Y.P.; Wu, D.; Xu, M.; Yang, M.T.; Zou, M.J. Capital misallocation, technological innovation, and green development efficiency: Empirical analysis based on China provincial panel data. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Yu, S.W.; Zheng, Y.L.; Hu, X.; Shu, K.S. Spatial impacts of biomass resource endowment on provincial green development efficiency. Renew. Energy 2022, 189, 651–662. [Google Scholar] [CrossRef]
- Haijing, R.; Yafei, L.; Shengxi, D. Research on the Measurement of Agricultural Green Development Level in Qinghai Province. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Moscow, Russia, 27 May–6 June 2019; Volume 267, p. 052031. [Google Scholar] [CrossRef]
- Long, R.; Li, H.; Wu, M.; Li, W. Dynamic evaluation of the green development level of China’s coal-resource-based cities using the TOPSIS method. Resour. Policy 2021, 74, 102415. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Forrest, J.Y.-L. Impact of financial agglomeration on regional green economic growth: Evidence from China. J. Environ. Plan. Manag. 2021, 65, 1611–1636. [Google Scholar] [CrossRef]
- Miao, C.L.; Duan, M.M.; Zuo, Y.; Wu, X.Y. Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China’s provinces*. Energy Policy 2021, 156, 112370. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, L.; Mei, L. The effect of industrial agglomeration on green development efficiency in Northeast China since the revitalization. J. Clean. Prod. 2020, 258, 120584. [Google Scholar] [CrossRef]
- Yang, Q.; Wan, X.; Ma, H. Assessing Green Development Efficiency of Municipalities and Provinces in China Integrating Models of Super-Efficiency DEA and Malmquist Index. Sustainability 2015, 7, 4492. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Shao, W.; Wang, S.; Zhang, Y.; Zhang, Y. Study on Regional Differences and Convergence of Green Development Efficiency of the Chemical Industry in the Yangtze River Economic Belt Based on Grey Water Footprint. Int. J. Environ. Res. Public Health 2022, 19, 1703. [Google Scholar] [CrossRef]
- Pangarso, A.; Sisilia, K.; Setyorini, R.; Peranginangin, Y.; Awirya, A.A. The long path to achieving green economy performance for micro small medium enterprise. J. Innov. Entrep. 2022, 11, 1–19. [Google Scholar] [CrossRef]
- He, L.; Sun, Y.; Xia, Y.; Zhong, Z. Construction of a green development performance index of industrial enterprises: Based on the empirical study of 458 listed industrial enterprises in China. Ecol. Indic. 2021, 132, 108239. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Long, H. Theoretical framework and formation mechanism of the green development system model in China. Environ. Dev. 2019, 32, 100465. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Long, H. Mechanism for Green Development Behavior and Performance of Industrial Enterprises (GDBP-IE) Using Partial Least Squares Structural Equation Modeling (PLS-SEM). Int. J. Environ. Res. Public Health 2020, 17, 8450. [Google Scholar] [CrossRef]
- Talebzadehhosseini, S.; Garibay, I. The interaction effects of technological innovation and path-dependent economic growth on countries overall green growth performance. J. Clean. Prod. 2022, 333, 130134. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Liu, S. The policy outcomes of low-carbon city construction on urban green development: Evidence from a quasi-natural experiment conducted in China. Sustain. Cities Soc. 2021, 66, 102699. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y. Green development of China’s Pan-Pearl River Delta mega-urban agglomeration. Sci. Rep. 2021, 11, 15717. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, H.; Zhou, Q.; Shi, V. Spatial Analysis of Industrial Green Development and Sustainable Cities in the Yellow River Basin. Discret. Dyn. Nat. Soc. 2021, 2021, 5529153. [Google Scholar] [CrossRef]
- Sun, Y.; Tong, L.; Liu, D. An Empirical Study of the Measurement of Spatial-Temporal Patterns and Obstacles in the Green Development of Northeast China. Sustainability 2020, 12, 10190. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, X.; Gong, Q.; Ji, Z. Measurement of Regional Green Economy Sustainable Development Ability Based on Entropy Weight-Topsis-Coupling Coordination Degree—A Case Study in Shandong Province, China. Sustainability 2019, 11, 280. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xi, Y.; Liu, S.Q.; Li, M.; Chen, L.; Wu, X.; Zhu, S.; Masoud, M. An improved evaluation framework for industrial green development: Considering the underlying conditions. Ecol. Indic. 2020, 112, 106044. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, H.; Dai, W.; Burns, K. Evaluation of industrial green development and industrial green competitiveness: Evidence from Chinese urban agglomerations. Ecol. Indic. 2021, 124, 107371. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Long, R.; Sun, Q.; Jiang, S.; Liu, B. Has the Sustainable Development Planning Policy Promoted the Green Transformation in China’s Resource-based Cities? Resour. Conserv. Recycl. 2022, 180, 106181. [Google Scholar] [CrossRef]
- Guo, H.; Gu, F.; Peng, Y.; Deng, X.; Guo, L. Does Digital Inclusive Finance Effectively Promote Agricultural Green Development?-A Case Study of China. Int. J. Environ. Res. Public Health 2022, 19, 6982. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, C.; Mu, X.; Li, G.; Xu, G. Urban green space quality in China: Quality measurement, spatial heterogeneity pattern and influencing factor. Urban For. Urban Green. 2021, 66, 127381. [Google Scholar] [CrossRef]
- Guo, F.; Tong, L.; Xu, L.; Lu, X.; Sheng, Y. Spatio-temporal pattern evolution and spatial spillover effect of green development efficiency: Evidence from Shandong Province, China. Growth Chang. 2019, 51, 382–401. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.-M.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. Tourism, transport infrastructure and income inequality: A panel data analysis of China. Curr. Issues Tour. 2021, 25, 1607–1626. [Google Scholar] [CrossRef]
- Li, X. TOPSIS model with entropy weight for eco geological environmental carrying capacity assessment. Microprocess. Microsyst. 2021, 82, 103805. [Google Scholar] [CrossRef]
- Tong, Y.; Zhou, H.; Jiang, L. Exploring the transition effects of foreign direct investment on the eco-efficiency of Chinese cities: Based on multi-source data and panel smooth transition regression models. Ecol. Indic. 2021, 121, 107073. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Hao, Y.; Liu, Z. Shooting two hawks with one arrow: Could China’s emission trading scheme promote green development efficiency and regional carbon equality? Energy Econ. 2021, 101, 105412. [Google Scholar] [CrossRef]
- Kaur, P.; Punia Nakai, G.; Kaur, N. Spatial Spillover of Product Innovation in the Manufacturing Sector: Evidence from India. J. Knowl. Econ. 2021, 13, 447–473. [Google Scholar] [CrossRef]
- Moura, A.C.M.; Fonseca, B.M. ESDA (Exploratory Spatial Data Analysis) of Vegetation Cover in Urban Areas—Recognition of Vulnerabilities for the Management of Resources in Urban Green Infrastructure. Sustainability 2020, 12, 1933. [Google Scholar] [CrossRef] [Green Version]
- Sarrión-Gavilán, M.D.; Benítez-Márquez, M.D.; Mora-Rangel, E.O. Spatial distribution of tourism supply in Andalusia. Tour. Manag. Perspect. 2015, 15, 29–45. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. Available online: http://www.geog.com.cn/CN/10.11821/dlxb201701010 (accessed on 8 June 2022).
- Li, J.; Wang, J.; Zhang, J.; Liu, C.; He, S.; Liu, L. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector. Ecol. Indic. 2022, 136, 108620. [Google Scholar] [CrossRef]
- Ye, T.; Zheng, H.; Ge, X.; Yang, K. Pathway of Green Development of Yangtze River Economics Belt from the Perspective of Green Technological Innovation and Environmental Regulation. Int. J. Environ. Res. Public Health 2021, 18, 10471. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Hu, X.; Wu, D.; Zhang, J. Exploring the green development path of the Yangtze River Economic Belt using the entropy weight method and fuzzy-set qualitative comparative analysis. PLoS ONE 2021, 16, e0260985. [Google Scholar] [CrossRef]
- Lee, C.-C.; Zeng, M.; Luo, K. The Impact of Green Development on Modernization in China: Evidence from 108 Cities in the Yangtze River Economic Belt. Emerg. Mark. Financ. Trade 2022, 1–25. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Espinoza, N. Moving towards a green decoupling between economic development and environmental stress? A new comprehensive approach for Ecuador. Clim. Dev. 2021, 14, 147–165. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, X.; Li, L. Research on Environmental Regulation, Technological Innovation and Green Transformation of Manufacturing Industry in the Yangtze River Economic Belt. Sustainability 2021, 13, 10005. [Google Scholar] [CrossRef]
- Gordon, K.; Borosage, R.; Pugh, D. The Green Industrial Revolution and the United States; Center for American Progress: Washington, DC, USA, 2013. [Google Scholar]
- Kojima, S. Green Growth and Green Economy in Japan. In Proceedings of the 2010 NISD Conference on “Green Growth and Green Economy”, Seoul, Korea, 25–26 November 2010; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan, 2010. Available online: https://www.iges.or.jp/en/pub/green-growth-and-green-economy-japan/en (accessed on 8 June 2022).
Target Layer | Guideline Layer | Indicator Layer | Unit | Attributes |
---|---|---|---|---|
Green Development Level | Growth Quality | GDP per capita growth rate | % | + |
Number of employees in scientific research, technical services, and geological exploration | Million people | + | ||
Per capita amount of actual use of foreign capital in the year | USD/person | + | ||
Average profit of industrial enterprises above the scale | Million CNY/person | + | ||
Fixed asset investment per capita | CNY/person | + | ||
Per capita disposable income of urban residents | CNY | + | ||
The proportion of science expenditure to GDP in fiscal expenditure | % | + | ||
Industry Development | Value added of primary industry | Billion CNY | + | |
Value added of secondary industry | Billion CNY | + | ||
Value added of tertiary industry | Billion CNY | + | ||
Value added of the tertiary industry as a proportion of GDP | % | + | ||
Growth rate of tertiary industry | % | + | ||
The proportion of tertiary industry employees | % | + | ||
Resource Utilization | Reduction rate of urban construction land area per unit GDP | % | + | |
Reduction rate of total urban water supply per unit GDP | % | + | ||
Energy consumption per unit GDP | − | |||
Arable land retention per capita | Hectares per 10,000 people | + | ||
Environmental Carrying Capacity | Urban population density | People/km2 | − | |
Emission of industrial wastewater per unit land area | Million tons/square km | − | ||
Emission of industrial soot per unit land area | Ton/km2 | − | ||
Industrial sulfur dioxide emissions per unit land area | Ton/km2 | − | ||
Amount of fertilizer application per unit land area for agriculture | Ton/km2 | − | ||
Industrial sulfur dioxide removal per unit land area | Ton/km2 | − | ||
Environmental Governance | Urban domestic sewage treatment rate | % | + | |
Harmless treatment rate of domestic waste | % | + | ||
PM2.5 | Index | − | ||
Green coverage rate of built-up areas | % | + | ||
Green Life | Park green area per capita | Square m/person | + | |
Number of urban public toilets | Square m | + | ||
Urban road area per capita | Square m | + | ||
Density of drainage pipes in built-up areas | km/km2 | + | ||
Urban water penetration rate | % | + | ||
Urban gas penetration rate | % | + | ||
Per capita retail sales of social consumer goods | CNY/person | + | ||
Total public library book collection per capita | Thousands of books, pieces/10,000 people | + | ||
Number of hospital and health center beds per capita | Sheets/10,000 people | + |
Target Layer | Guideline Layer | Indicator Layer | Unit | |
---|---|---|---|---|
Green Development Efficiency | Inputs | Workforce | Number of employees | Person |
Fixed assets | Investment in fixed assets | CNY | ||
Energy consumption | Energy consumption | Index | ||
Water supply | Total urban water supply | % | ||
Land use | Arable land area | Hectares | ||
Urban construction land area | Square km | |||
Desired outputs | Economic output | GDP | Million CNY | |
Value added of tertiary industry | Billion CNY | |||
Ecological environment | Park green space area | m2 | ||
Social output | Total retail sales of social consumer goods | CNY | ||
Public library book collection | Thousands of books | |||
Undesired outputs | Wastewater emissions | Industrial wastewater emissions | Million tons | |
Fume and dust emissions | Industrial smoke and dust emissions | Ton | ||
Exhaust emissions | Industrial sulfur dioxide emissions | Ton | ||
Air pollution | PM2.5 | μg/m3 |
Detection Factors | 2004 | 2008 | 2013 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
qv | sig | Rank | qv | sig | Rank | qv | sig | Rank | qv | sig | Rank | |
GDP per capita growth rate (X1) | 0.0998 | 0.0457 | 30 | 0.1699 | 0.0008 | 23 | 0.0835 | 0.0424 | 28 | 0.0810 | 0.0949 | 25 |
Number of employees in scientific research, technical services, and geological exploration (X2) | 0.6492 | 0.0000 | 5 | 0.8121 | 0.0000 | 4 | 0.8109 | 0.0000 | 2 | 0.8648 | 0.0000 | 2 |
Per capita amount of actual use of foreign capital in the year (X3) | 0.5693 | 0.0000 | 7 | 0.4958 | 0.0000 | 11 | 0.5896 | 0.0000 | 7 | 0.4889 | 0.0000 | 7 |
Average profit of industrial enterprises above the scale (X4) | 0.2365 | 0.0001 | 20 | 0.1062 | 0.0358 | 27 | 0.0537 | 0.2979 | 34 | 0.1505 | 0.0023 | 16 |
Fixed asset investment per capita (X5) | 0.4496 | 0.0000 | 10 | 0.4284 | 0.0000 | 13 | 0.2029 | 0.0006 | 17 | 0.1381 | 0.0097 | 18 |
Per capita disposable income of urban residents (X6) | 0.3803 | 0.0000 | 14 | 0.7679 | 0.0000 | 5 | 0.6421 | 0.0000 | 5 | 0.5241 | 0.0000 | 6 |
The proportion of science expenditure to GDP in fiscal expenditure (X7) | 0.3414 | 0.0000 | 15 | 0.2963 | 0.0278 | 16 | 0.2788 | 0.0296 | 14 | 0.2354 | 0.0179 | 13 |
Value added of primary industry (X8) | 0.1184 | 0.0287 | 27 | 0.0961 | 0.2588 | 28 | 0.1256 | 0.0219 | 21 | 0.2031 | 0.0196 | 14 |
Value added of secondary industry (X9) | 0.7711 | 0.0000 | 2 | 0.9240 | 0.0000 | 1 | 0.7669 | 0.0000 | 4 | 0.7577 | 0.0000 | 3 |
Value added of tertiary industry (X10) | 0.8269 | 0.0000 | 1 | 0.9119 | 0.0000 | 2 | 0.9169 | 0.0000 | 1 | 0.8678 | 0.0000 | 1 |
Value added of the tertiary industry as a proportion of GDP (X11) | 0.2032 | 0.0022 | 22 | 0.2929 | 0.0000 | 17 | 0.3219 | 0.0003 | 13 | 0.2739 | 0.0007 | 12 |
Growth rate of tertiary industry (X12) | 0.0370 | 0.4481 | 36 | 0.0304 | 0.5471 | 36 | 0.0691 | 0.0774 | 31 | 0.1113 | 0.0217 | 20 |
The proportion of tertiary industry employees (X13) | 0.1407 | 0.0109 | 25 | 0.1104 | 0.0049 | 26 | 0.0521 | 0.1812 | 35 | 0.0386 | 0.2756 | 34 |
Reduction rate of urban construction land area per unit GDP (X14) | 0.2570 | 0.0077 | 19 | 0.0698 | 0.3179 | 32 | 0.0641 | 0.1775 | 33 | 0.0962 | 0.0244 | 22 |
Reduction rate of total urban water supply per unit GDP (X15) | 0.0430 | 0.2315 | 34 | 0.1400 | 0.0087 | 24 | 0.0746 | 0.0263 | 29 | 0.0255 | 0.6303 | 36 |
Energy consumption per unit GDP (X16) | 0.3931 | 0.0000 | 13 | 0.1314 | 0.0125 | 25 | 0.1138 | 0.0114 | 23 | 0.1062 | 0.0159 | 21 |
Arable land retention per capita (X17) | 0.2763 | 0.0030 | 17 | 0.4392 | 0.0002 | 12 | 0.2281 | 0.0002 | 16 | 0.3209 | 0.0001 | 11 |
Urban population density (X18) | 0.4273 | 0.0000 | 11 | 0.6828 | 0.0000 | 6 | 0.5055 | 0.0000 | 9 | 0.5339 | 0.0000 | 5 |
Emission of industrial wastewater per unit land area (X19) | 0.4791 | 0.0000 | 9 | 0.3828 | 0.0004 | 14 | 0.4448 | 0.0008 | 11 | 0.4397 | 0.0000 | 10 |
Emission of industrial soot per unit land area (X20) | 0.2690 | 0.0002 | 18 | 0.2022 | 0.0022 | 20 | 0.1703 | 0.0107 | 19 | 0.1400 | 0.0089 | 17 |
Industrial sulfur dioxide emissions per unit land area (X21) | 0.5353 | 0.0000 | 8 | 0.6704 | 0.0000 | 8 | 0.2618 | 0.0824 | 15 | 0.0646 | 0.1738 | 30 |
Amount of fertilizer application per unit land area for agriculture (X22) | 0.0822 | 0.0429 | 31 | 0.0727 | 0.1292 | 31 | 0.0985 | 0.0215 | 27 | 0.1258 | 0.0164 | 19 |
Industrial sulfur dioxide removal per unit land area (X23) | 0.3165 | 0.0001 | 16 | 0.2340 | 0.0007 | 18 | 0.1815 | 0.0032 | 18 | 0.0715 | 0.1063 | 28 |
Urban domestic sewage treatment rate (X24) | 0.0645 | 0.1745 | 33 | 0.2051 | 0.0002 | 19 | 0.1029 | 0.0415 | 26 | 0.0535 | 0.0698 | 33 |
Harmless treatment rate of domestic waste (X25) | 0.2076 | 0.0000 | 21 | 0.1918 | 0.0001 | 21 | 0.3595 | 0.0000 | 12 | 0.0694 | 0.1826 | 29 |
PM2.5 concentration (X26) | 0.0405 | 0.0823 | 35 | 0.0453 | 0.2109 | 35 | 0.0653 | 0.1518 | 32 | 0.0573 | 0.2253 | 32 |
Greening coverage rate of built-up areas (X27) | 0.1921 | 0.0008 | 23 | 0.0826 | 0.0890 | 29 | 0.1142 | 0.0116 | 22 | 0.0346 | 0.3238 | 35 |
Park green area per capita (X28) | 0.1187 | 0.0227 | 26 | 0.0481 | 0.1878 | 34 | 0.0293 | 0.6637 | 36 | 0.0719 | 0.1881 | 27 |
Number of urban public toilets (X29) | 0.7080 | 0.0000 | 3 | 0.8626 | 0.0000 | 3 | 0.7865 | 0.0000 | 3 | 0.7133 | 0.0000 | 4 |
Urban road area per capita (X30) | 0.1013 | 0.0521 | 29 | 0.0605 | 0.2437 | 33 | 0.0742 | 0.3035 | 30 | 0.0799 | 0.3799 | 26 |
Density of drainage pipes in built-up areas (X31) | 0.0780 | 0.0967 | 32 | 0.0764 | 0.0236 | 30 | 0.1304 | 0.0482 | 20 | 0.0841 | 0.0825 | 24 |
Urban water penetration rate (X32) | 0.1084 | 0.0548 | 28 | 0.1760 | 0.0010 | 22 | 0.1050 | 0.0123 | 25 | 0.0865 | 0.0634 | 23 |
City gas penetration rate (X33) | 0.1605 | 0.0137 | 24 | 0.6805 | 0.0000 | 7 | 0.5929 | 0.0000 | 6 | 0.0629 | 0.1816 | 31 |
Per capita retail sales of social consumer goods (X34) | 0.6563 | 0.0000 | 4 | 0.5395 | 0.0000 | 10 | 0.4927 | 0.0000 | 10 | 0.4683 | 0.0000 | 8 |
Total public library book collection per capita (X35) | 0.5882 | 0.0000 | 6 | 0.5815 | 0.0000 | 9 | 0.5774 | 0.0000 | 8 | 0.4464 | 0.0006 | 9 |
Number of hospital and health center beds per capita (X36) | 0.3956 | 0.0000 | 12 | 0.3191 | 0.0000 | 15 | 0.1054 | 0.1433 | 24 | 0.1757 | 0.0322 | 15 |
Influencing Factors | Proxy Variables | Unit | Mean | Max | Min | S.D. | Symbol |
---|---|---|---|---|---|---|---|
Economic Development | GDP per capita | CNY | 10.15 | 12.00 | 7.95 | 0.80 | eco |
Industrial Structure | Share of secondary industry in GDP | % | 3.89 | 4.48 | 2.93 | 0.22 | ind |
Population Density | Urban population density | People/km2 | 6.02 | 7.74 | 3.97 | 0.61 | pop |
Science and Technology Expenditure | Share of fiscal expenditure on science in GDP | % | −6.63 | −3.94 | −17.40 | 1.19 | tec |
Education Level | Share of educated population above high school | % | −1.83 | −0.76 | −2.88 | 0.43 | edu |
Government Support | Fiscal expenditure as a proportion of GDP | % | −1.91 | 7.47 | −6.91 | 0.56 | gov |
Energy Consumption | Energy consumption per unit GDP | - | 4.25 | 5.87 | 2.76 | 0.48 | energy |
Opening up | The proportion of actual foreign investment used in the year to GDP | % | −7.79 | −3.23 | −14.66 | 1.93 | open |
Variables | Model (1) | Model (2) | Model (3) | Model (4) |
---|---|---|---|---|
eco | 0.3427 *** | 0.3065 *** | 0.1161 *** | 0.2803 *** |
ind | −0.1593 *** | −0.1821 *** | 0.1681 *** | −0.0545 |
pop | −0.0564 ** | 0.1807 *** | 0.2455 *** | −0.0273 |
tec | 0.01261 *** | −0.0154 *** | −0.0087 | 0.00001 |
edu | −0.0312 | 0.0777 *** | 0.0845 | −0.1294 |
gov | −0.0046 | −0.0361 *** | 0.0336 *** | 0.0149 |
energy | −0.2077 *** | −0.2434 *** | 0.2670 *** | −0.1401 *** |
open | −0.0236 *** | −0.0137 ** | −0.0030 | −0.0166 ** |
constant | −2.695 *** | −3.315 *** | 1.6931 *** | −2.9090 *** |
Panel-setting F test | 24.6 *** | |||
Hausman test | 115.68 *** | |||
Breush–Pagan LM test | 2422.37 *** | |||
Modified Wald test | 2576.14 *** | |||
Wooldridge test | 58.14 *** | |||
Pesaran test | 45.288 *** | |||
Frees test | 11.735 *** | |||
R2 | 0.6040 | 0.6093 | 0.6657 | 0.5569 |
Observations | 1498 | 1498 | 1498 | 1498 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Ma, Y.; Ren, J. Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China. Int. J. Environ. Res. Public Health 2022, 19, 9306. https://doi.org/10.3390/ijerph19159306
Zhang R, Ma Y, Ren J. Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China. International Journal of Environmental Research and Public Health. 2022; 19(15):9306. https://doi.org/10.3390/ijerph19159306
Chicago/Turabian StyleZhang, Rui, Yong Ma, and Jie Ren. 2022. "Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China" International Journal of Environmental Research and Public Health 19, no. 15: 9306. https://doi.org/10.3390/ijerph19159306
APA StyleZhang, R., Ma, Y., & Ren, J. (2022). Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China. International Journal of Environmental Research and Public Health, 19(15), 9306. https://doi.org/10.3390/ijerph19159306