Migration of Trivalent Praseodymium from Tombarthite Sewage by Microtubule Ultrafiltration Reactor with Organophosphorus in Fuel Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. MUFR Migration Process
2.2. MUFR Migration Process Principle
- (1)
- Praseodymium(III) moves only in the form of the PrR3·3HR complex in organophosphorus liquid;
- (2)
- The convection in the ultrafiltration microtubule has no net flow;
- (3)
- Metallic ions only react with organophosphorus liquid at the microtubule interface;
- (4)
- The organophosphorus monomer and dimer are always in equilibrium in the whole enrichment section;
- (5)
- We found that the solubility of organophosphorus liquid in acidic liquid is negligible. Therefore, it is assumed that the molarity of organophosphorus in MUFR remains unchanged [19].
2.3. Reagent
2.4. Preparation of Liquid
2.5. Experimental Materials and Determination
3. Results and Discussion
3.1. Constancy of MUFR
3.2. Effect of Flow Velocity of Sewage Section and Enrichment Section
3.3. Effect of Sewage pH
3.4. Effect of Acid Molarity in Enrichment Section
3.5. Effect of Volume Ratio of Enriched Section (O/A)
3.6. Effects of Different Acid Liquids as Stripping Agents
3.7. Effect of Praseodymium(III) Cinit in Waste Water Section
3.8. Effect of Organophosphonic Molarity
3.9. Effect of Ionic Strength in Sewage
3.10. Reuse of Organophosphonic Liquid
3.11. Reuse of PAN Microtubules
3.12. Retention in PAN Microtubules and Stripping Effects
3.13. Effect of Structural Parameters of PAN Ultrafiltration Microtubules
3.13.1. Effect of Microtubule Thickness
3.13.2. Effect of Microtubule Internal Diameter
3.13.3. Effect of Microtubule Porosity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oron, G.; Armon, R.; Mandelbaum, R.; Manor, Y.; Campos, C.; Gillerman, L.; Saigot, M.; Gerba, C.; Klein, I.; Enriquez, C. Secondary sewage disposal for crop irrigation with minimal risks. Water Sci. Technol. 1999, 43, 139–146. [Google Scholar] [CrossRef]
- Tadayonnejad, M.; Mosaddeghi, M.R.; Dashtaki, S.G. Changing soil hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide. Agric. Water Manag. 2017, 188, 12–20. [Google Scholar] [CrossRef]
- Islam, M.N.; Jung, H.Y.; Park, J.H. Subcritical water treatment of explosive and heavy metallic-ion co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metallic-ion. J. Environ. Manag. 2015, 163, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Badruzzaman, M.; Oppenheimer, J.A.; Jacangelo, J.G. Impact of environmental conditions on the suitability of microconstituents as markers for determining nutrient loading from reclaimed water. Water Res. 2013, 46, 6198–6210. [Google Scholar] [CrossRef]
- Rivera-Aguilar, V.; Godínez-Alvarez, H.; Moreno-Torres, R.; Rodríguez-Zaragoza, S. Soil physico-chemical properties affecting the distribution of biological soil crusts along an environmental transect at Zapotitlán drylands, Mexico. J. Arid. Environ. 2009, 63, 1023–1028. [Google Scholar] [CrossRef]
- Wang, J.; Gardinali Piero, R. Identification of phase II pharmaceutical metabolites in reclaimed water using high reliquid benchtop Orbitrap mass spectrometry. Chemosphere 2014, 106, 65–73. [Google Scholar] [CrossRef]
- Moreno, F.; Cabrera, F.; Fernández-Bo, E. Irrigation with saline water in the reclaimed marsh soils of south-west Spain: Impact on soil properties and cotton and sugar beet crops. Agric. Water Manag. 2007, 48, 133–150. [Google Scholar] [CrossRef]
- Pedrero, F.; Maestre-Valero, J.F.; Mounzer, O.; Alarcón, J.J.; Nicolás, E. Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. Agric. Water Manag. 2014, 146, 228–236. [Google Scholar] [CrossRef]
- Al Kuisi, M.; Aljazzar, T.; Rüde, T.; Margane, A. Impact of the use of reclaimed water on the quality of groundwater resources in the Jordan Valley, Jordan. Clean-Soil Air Water 2008, 36, 1001–1014. [Google Scholar] [CrossRef]
- Ichihara, M.; Yamamoto, A.; Takakura, K.; Kakutani, N.; Sudo, M. Distribution and pollutant load of hexabromocyclododecane (HBCD) in sewage treatment plants and water from Japanese Rivers. Chemosphere 2014, 110, 68–84. [Google Scholar] [CrossRef]
- Puchongkawarin, C.; Gomez-Mont, C.; Stuckey, D.C.; Chachuat, B. Optimization-based methodology for the development of sewage facilities for energy and nutrient migration. Chemosphere 2015, 140, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Mutamim, N.S.A.; Noor, Z.Z.; Hassan, M.A.A.; Olsson, G. Application of film bioreactor technology in treating high strength industrial sewage: A performance review. Desalination 2012, 305, 1–11. [Google Scholar] [CrossRef]
- Pei, L.; Xiao, J.A.; Sun, L.Y. The effects of reclaimed water irrigation on the soil characteristics and microbial populations of plant rhizosphere. Environ. Sci. Pollut. Res. 2021, 29, 17570–17579. [Google Scholar]
- Hosseini Koupaie, E.; Eskicioglu, C. Health risk assessment of heavy metallic-ion through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis. J. Hazard. Mater. 2015, 300, 855–865. [Google Scholar] [CrossRef] [PubMed]
- von Hoffen, L.P.; Säumel, I. Orchards for edible cities: Cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicol. Environ. Saf. 2014, 101, 233–239. [Google Scholar] [CrossRef]
- Yang, J.; Min, Q.L. A passive and active microwave-vector radiative transfer (PAM-VRT) model. J. Quant. Spectrosc. Radiat. Transf. 2015, 165, 123–133. [Google Scholar] [CrossRef]
- Chen, L.J.; Feng, Q.; Li, C.S. Spatial Variations of Soil Microbial Activities in Saline Groundwater-Irrigated Soil Ecosystem. Environ. Manag. 2016, 57, 1054–1061. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, L.; Pan, B.; Guan, W.; Sun, X.; Cai, A. Distribution features and controls of heavy metallic-ion in surface sediments from the riverbed of the Ningxia-Inner Mongolian reaches, Yellow River, China. Chemosphere 2016, 144, 29–42. [Google Scholar] [CrossRef]
- Rivero-Huguet, M.; Marshall, W.D. Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metallic-ion from contaminated soils. Chemosphere 2011, 83, 668–673. [Google Scholar] [CrossRef]
- Frantz, A.; Pottier, M.A.; Karimi, B.; Corbel, H. Contrasting levels of heavy metallic-ion in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 2012, 168, 23–28. [Google Scholar] [CrossRef]
- Salazar, M.J.; Rodriguez, J.H.; Nieto, G.L.; Pignata, M.L. Effects of heavy metal molaritys (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mater. 2012, 233–234, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Gołdyn, B.; Chudzińska, M.; Barałkiewicz, D.; Celewicz-Gołdyn, S. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicol. Environ. Saf. 2015, 118, 103–111. [Google Scholar] [CrossRef]
- Muhid, P.; Davis, T.W.; Bunn, S.E.; Burford, M.A. Burford.Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition. Water Res. 2013, 46, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Rosabal, A.; Morillo, E.; Undabeytia, T.; Maqueda, C.; Justo, A.; Herencia, J.F. Long-term impacts of sewage irrigation on Cuban soils. Soil Sci. Plant Nutr. 2007, 71, 1292–1298. [Google Scholar]
- Dziubanek, G.; Piekut, A.; Rusin, M.; Baranowska, R.; Hajok, I. Contamination of food crops grown on soils with elevated heavy metallic-ion content. Ecotoxicol. Environ. Saf. 2015, 118, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Fierens, T.; Cornelis, C.; Standaert, A.; Sioen, I.; De Henauw, S.; Van Holderbeke, M. Modelling the environmental transfer of phthalates and polychlorinated dibenzo-p-dioxins and dibenzofurans intoagricultural products: The EN-forc model. Environ. Res. 2014, 133, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tang, X.Y.; Kim Jaeshin Gregory Korshin, V. Formation of aldehydes and carboxylic acids in ozonated surface water and sewage: A clear relationship with fluorescence changes. Chemosphere 2015, 125, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Jiang, Y.; Shu, Y.; Hu Xing Liu, L.M.; Luo, F. Effects of mining sewage discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J. Geochem. Explor. 2014, 146, 139–150. [Google Scholar] [CrossRef]
- Clidia, E.M.; Pinto, D.; Farias, F. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective. Food Chem. Toxicol. 2015, 83, 1–9. [Google Scholar]
Time (min) | Migration Percentage (%) | ||||
---|---|---|---|---|---|
8.00 × 10−5 mol/L | 1.02 × 10−4 mol/L | 1.29 × 10−4 mol/L | 1.58 × 10−4 mol/L | 2.00 × 10−4 mol/L | |
0 | 0 | 0 | 0 | 0 | 0 |
20 | 41.50 | 39.70 | 24.80 | 27.50 | 17.30 |
60 | 79.80 | 54.60 | 52.10 | 36.70 | 19.90 |
100 | 91.40 | 73.20 | 72.30 | 61.20 | 49.30 |
130 | - | 87.30 | 82.40 | 75.30 | 59.50 |
160 | - | - | 95.20 | 89.20 | 69.00 |
No. | PAN Microtubule Structure Parameters | ||||
---|---|---|---|---|---|
Effective Length of Microtubule, L/(m) | Porosity | Number of Microtubules | Internal Diameter of Microtubule, di/(mm) | Thickness of Microtubule, dm/(mm) | |
M1 | 0.25 | 63% | 20 | 2.88 | 0.27 |
M2 | 0.25 | 63% | 22 | 2.88 | 0.51 |
M3 | 0.25 | 63% | 20 | 2.88 | 0.58 |
M4 | 0.25 | 63% | 22 | 2.08 | 0.50 |
M5 | 0.25 | 63% | 20 | 1.43 | 0.40 |
M6 | 0.25 | 22% | 23 | 2.88 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L.; Wang, L. Migration of Trivalent Praseodymium from Tombarthite Sewage by Microtubule Ultrafiltration Reactor with Organophosphorus in Fuel Oil. Int. J. Environ. Res. Public Health 2022, 19, 9364. https://doi.org/10.3390/ijerph19159364
Pei L, Wang L. Migration of Trivalent Praseodymium from Tombarthite Sewage by Microtubule Ultrafiltration Reactor with Organophosphorus in Fuel Oil. International Journal of Environmental Research and Public Health. 2022; 19(15):9364. https://doi.org/10.3390/ijerph19159364
Chicago/Turabian StylePei, Liang, and Liming Wang. 2022. "Migration of Trivalent Praseodymium from Tombarthite Sewage by Microtubule Ultrafiltration Reactor with Organophosphorus in Fuel Oil" International Journal of Environmental Research and Public Health 19, no. 15: 9364. https://doi.org/10.3390/ijerph19159364
APA StylePei, L., & Wang, L. (2022). Migration of Trivalent Praseodymium from Tombarthite Sewage by Microtubule Ultrafiltration Reactor with Organophosphorus in Fuel Oil. International Journal of Environmental Research and Public Health, 19(15), 9364. https://doi.org/10.3390/ijerph19159364