The Effects of High-Intensity Power Training versus Traditional Resistance Training on Exercise Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.2.1. HIPT Protocol
2.2.2. TRT Protocol
2.3. Assessment
2.3.1. Upper Limb Explosive Force (Bench Press)
2.3.2. Lower Limb Explosive Force (Vertical Jump)
2.3.3. Anaerobic Power Test (Wingate Anaerobic Test)
2.4. Statistical Analysis
3. Results
3.1. Differences in Upper Limb Explosive Force between Pretest and Post-test
3.2. Differences in Vertical Jump between Pretest and Post-test
3.3. Differences in Anaerobic Power between Pretest and Post-Test
4. Discussion
4.1. Explosive Force of Upper Limb
4.2. Explosive Force of Lower Limb
4.3. Anaerobic Power
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Badillo, J.J.; Marques, M.C. Relationship between kinematic factors and countermovement jump height in trained track and field athletes. J. Strength Cond. Res. 2010, 24, 3443–3447. [Google Scholar] [CrossRef]
- Moro, T.; Marcolin, G.; Bianco, A.; Bolzetta, F.; Berton, L.; Sergi, G.; Paoli, A. Effects of 6 weeks of traditional resistance training or high intensity interval resistance training on body composition, aerobic power and strength in healthy young subjects: A randomized parallel trial. Int. J. Environ. Res. Public Health 2020, 17, 4093. [Google Scholar] [CrossRef] [PubMed]
- Romero-Arenas, S.; Ruiz, R.; Vera-Ibáñez, A.; Colomer-Poveda, D.; Guadalupe-Grau, A.; Márquez, G. Neuromuscular and cardiovascular adaptations in response to high-intensity interval power training. J. Strength Cond. Res. 2018, 32, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Kraemer, W.J. Performance and physiologic adaptations to resistance training. Am. J. Phys. Med. Rehabil. 2002, 81, S3–S16. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Designing resistance training programmes to enhance muscular fitness. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef]
- Abdessemed, D.; Duché, P.; Hautier, C.; Poumarat, G.; Bedu, M. Effect of recovery duration on muscular power and blood lactate during the bench press exercise. Int. J. Sports Med. 1999, 20, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Willardson, J.M. A brief review: Factors affecting the length of the rest interval between resistance exercise sets. J. Strength Cond. Res. 2006, 20, 978. [Google Scholar] [CrossRef]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.d.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J. CrossFit overview: Systematic review and meta-analysis. Sports Med. Open 2018, 4, 1–14. [Google Scholar] [CrossRef]
- Márquez, G.; Romero-Arenas, S.; Marín-Pagán, C.; Vera-Ibañez, A.; Fernandez Del Olmo, M.; Taube, W. Peripheral and central fatigue after high intensity resistance circuit training. Muscle Nerve 2017, 56, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Sharp, T.; Grandou, C.; Coutts, A.J.; Wallace, L. The Effects of High-Intensity Multimodal Training in Apparently Healthy Populations: A Systematic Review. Sports Med. Open 2022, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Natera, A.O.; Cardinale, M.; Keogh, J.W. The effect of high volume power training on repeated high-intensity performance and the assessment of repeat power ability: A systematic review. Sports Med. 2020, 50, 1317–1339. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Mazzetti, S.A.; Nindl, B.C.; Gotshalk, L.A.; Volek, J.S.; Bush, J.A.; Marx, J.O.; Dohi, K.; Gomez, A.L.; Miles, M. Effect of resistance training on women’s strength/power and occupational performances. Med. Sci. Sports Exerc. 2001, 33, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Frontera, W.R.; Ochala, J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Rivière, M.; Louit, L.; Strokosch, A.; Seitz, L.B. Variable resistance training promotes greater strength and power adaptations than traditional resistance training in elite youth rugby league players. J. Strength Cond. Res. 2017, 31, 947–955. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Sánchez-Lorente, J.; Blazevich, A.J. Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. J. Strength Cond. Res. 2008, 22, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz, P.E.; Perez-Gomez, J.; Chavarrias, M.; Blazevich, A.J. Similarity in adaptations to high-resistance circuit vs. traditional strength training in resistance-trained men. J. Strength Cond. Res. 2011, 25, 2519–2527. [Google Scholar] [CrossRef]
- Padulo, J.; Mignogna, P.; Mignardi, S.; Tonni, F.; D’ottavio, S. Effect of different pushing speeds on bench press. Int. J. Sports Med. 2012, 33, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.; González-Badillo, J. Effect of movement velocity during resistance training on neuromuscular performance. Int. J. Sports Med. 2014, 35, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Christou, M.; Smilios, I.; Sotiropoulos, K.; Volaklis, K.; Pilianidis, T.; Tokmakidis, S.P. Effects of resistance training on the physical capacities of adolescent soccer players. J. Strength Cond. Res. 2006, 20, 783–791. [Google Scholar] [PubMed]
- Channell, B.T.; Barfield, J. Effect of Olympic and traditional resistance training on vertical jump improvement in high school boys. J. Strength Cond. Res. 2008, 22, 1522–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, M.; González-Badillo, J.; Häkkinen, K.; Ibanez, J.; Kraemer, W.; Altadill, A.; Eslava, J.; Gorostiaga, E.M. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int. J. Sports Med. 2006, 27, 718–724. [Google Scholar] [CrossRef]
- Jaric, S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int. J. Sports Med. 2015, 36, 699–704. [Google Scholar] [CrossRef]
- Haff, G.G.; Nimphius, S. Training principles for power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Adaptations in athletic performance after ballistic power versus strength training. Med. Sci. Sports Exerc. 2010, 42, 1582–1598. [Google Scholar] [CrossRef]
- Hackett, D.; Davies, T.; Soomro, N.; Halaki, M. Olympic weightlifting training improves vertical jump height in sportspeople: A systematic review with meta-analysis. Br. J. Sports Med. 2016, 50, 865–872. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Hansen, J.; Hollan, I.; Ellefsen, S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand. J. Med. Sci. Sports 2015, 25, e89–e98. [Google Scholar] [CrossRef]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med. Sci. Sports Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Suárez, P.C.; Aburto-Corona, J.A.; Rentería, I.; Gómez-Miranda, L.M.; Moncada-Jiménez, J.; Lira, F.S.; Antunes, B.M.; Jiménez-Maldonado, A. Short-Term High-Intensity Circuit Training Does Not Modify Resting Heart Rate Variability in Adults during the COVID-19 Confinement. Int. J. Environ. Res. Public Health 2022, 19, 7367. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.L.F.; Pinto, R.S.; Brusco, C.M.; Cadore, E.L.; Radaelli, R. COVID-19 pandemic is an urgent time for older people to practice resistance exercise at home. Exp. Gerontol. 2020, 141, 111101. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, S.; Francavilla, V.C.; Bonavolontà, V.; De Florio, O.; Carvutto, R.; De Candia, M.; Latino, F.; Fischetti, F. Proposal for a fitness program in the school setting during the covid 19 pandemic: Effects of an 8-week crossfit program on psychophysical well-being in healthy adolescents. Int. J. Environ. Res. Public Health 2021, 18, 3141. [Google Scholar] [CrossRef] [PubMed]
- Salierno, M.; Ceruso, R.; Sannicandro, I.; Altavilla, G. Circuit training as a method of adaptation and prevention for people with type 2 diabetes. J. Hum. Sport Exerc. 2021, 16, S1045–S1054. [Google Scholar]
- Silva, J.R.; Nassis, G.P.; Rebelo, A. Strength training in soccer with a specific focus on highly trained players. Sports Med. Open 2015, 1, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila-Chã, C.; Falla, D.; Farina, D. Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. J. Appl. Physiol. 2010, 109, 1455–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups | HIPT (N = 12) | TRT (N = 9) | p-Value | ||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
Male/Female | 9/3 | 7/2 | |||||
Age (years) | 21.00 | 20.00 | 22.75 | 22.00 | 19.50 | 24.00 | 0.469 |
Height (cm) | 176.00 | 167.75 | 181.50 | 175.00 | 172.50 | 179.00 | 0.943 |
Weight (kg) | 73.50 | 62.25 | 75.00 | 67.00 | 59.50 | 72.00 | 0.270 |
BMI (kg/m2) | 22.44 | 21.73 | 24.27 | 21.79 | 20.38 | 23.92 | 0.255 |
Assessments | Group | Pre | Post | ||
---|---|---|---|---|---|
Mean ± SD | Median [Q1, Q3] | Mean ± SD | Median [Q1, Q3] | ||
bench press (N) | HIPT | 160.33 ± 47.72 | 162.01 [114.95, 188.31] | 186.95 ± 43.72 | 190.00 [138.23, 236.29] |
TRT | 158.81 ± 49.33 | 172.74 [113.35, 194.60] | 189.02 ± 54.96 | 203.11 [148.63, 217.08] | |
vertical jump (cm) | HIPT | 57.00 ± 6.18 | 59.00 [50.25, 62.75] | 63.25 ± 5.58 | 65.50 [57.25, 68.00] |
TRT | 57.11 ± 10.96 | 59.00 [47.50, 67.00] | 59.11 ± 10.69 | 59.00 [50.00, 68.50] | |
peak power (W) | HIPT | 788.25 ± 156.23 | 790.61 [663.55, 934.73] | 835.31 ± 122.74 | 889.43 [718.84, 934.73] |
TRT | 773.38 ± 148.66 | 825.55 [621.78, 900.03] | 773.68 ± 140.18 | 823.55 [648.25, 895.32] | |
mean power (W) | HIPT | 627.58 ± 98.64 | 642.37 [532.22, 711.34] | 715.30 ± 104.74 | 746.69 [617.47, 798.46] |
TRT | 616.13 ± 127.56 | 676.49 [468.25, 726.49] | 639.24 ± 117.11 | 696.10 [526.78, 730.71] | |
peak power per kg (W·kg−1) | HIPT | 11.37 ± 1.23 | 10.64 [10.54, 12.35] | 12.10 ± 0.52 | 12.25 [11.48, 12.41] |
TRT | 11.68 ± 1.64 | 11.31 [10.20, 13.14] | 11.66 ± 1.26 | 11.47 [10.62, 12.70] | |
mean power per kg (W·kg−1) | HIPT | 9.14 ± 1.09 | 9.44 [8.60, 9.77] | 10.44 ± 1.24 | 10.70 [9.97, 11.20] |
TRT | 9.29 ± 1.42 | 9.12 [7.74, 10.17] | 9.64 ± 1.11 | 9.56 [8.63, 10.58] |
Group | Assessments | Chi-Square | df | p-Value |
---|---|---|---|---|
bench press (N) | HIPT | 5.333 | 1 | 0.021 * |
TRT | 9.000 | 1 | 0.003 ** | |
mean power (W) | HIPT | 12.000 | 1 | 0.001 ** |
TRT | 2.778 | 1 | 0.096 | |
mean power per kg (W·kg−1) | HIPT | 12.000 | 1 | 0.001 ** |
TRT | 2.778 | 1 | 0.096 |
Assessments | Effect | F | df | p-Value | Partial Eta Squared |
---|---|---|---|---|---|
vertical jump (cm) | group | 0.275 | 1 | 0.606 | 0.014 |
time (pre-post) | 55.307 | 1 | <0.001 *** | 0.744 | |
Group × time | 14.677 | 1 | 0.001 ** | 0.436 | |
peak power (W) | group | 0.351 | 1 | 0.560 | 0.018 |
time (pre-post) | 3.069 | 1 | 0.096 | 0.139 | |
Group × time | 2.992 | 1 | 0.100 | 0.136 | |
peak power per kg (W·kg−1) | group | 0.014 | 1 | 0.906 | 0.001 |
time (pre-post) | 3.283 | 1 | 0.086 | 0.147 | |
Group × time | 3.554 | 1 | 0.075 | 0.158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-H.; Chou, Y.-C.; Chang, Y.-C.; Tan, K.-H.; Wu, M.-H. The Effects of High-Intensity Power Training versus Traditional Resistance Training on Exercise Performance. Int. J. Environ. Res. Public Health 2022, 19, 9400. https://doi.org/10.3390/ijerph19159400
Chang Y-H, Chou Y-C, Chang Y-C, Tan K-H, Wu M-H. The Effects of High-Intensity Power Training versus Traditional Resistance Training on Exercise Performance. International Journal of Environmental Research and Public Health. 2022; 19(15):9400. https://doi.org/10.3390/ijerph19159400
Chicago/Turabian StyleChang, Yu-Hua, Yi-Chen Chou, Yun-Chi Chang, Kok-Hwa Tan, and Mei-Hsuan Wu. 2022. "The Effects of High-Intensity Power Training versus Traditional Resistance Training on Exercise Performance" International Journal of Environmental Research and Public Health 19, no. 15: 9400. https://doi.org/10.3390/ijerph19159400
APA StyleChang, Y. -H., Chou, Y. -C., Chang, Y. -C., Tan, K. -H., & Wu, M. -H. (2022). The Effects of High-Intensity Power Training versus Traditional Resistance Training on Exercise Performance. International Journal of Environmental Research and Public Health, 19(15), 9400. https://doi.org/10.3390/ijerph19159400