Effects of the Digital Economy on Carbon Emissions: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Digital Economy and Carbon Emissions
2.2. The Digital Economy, Mediating Mechanisms, and Carbon Emissions
2.2.1. The Digital Economy, Innovation Mechanisms, and Carbon Emissions
2.2.2. The Digital Economy, Industrial Structure Upgrading, and Carbon Emissions
2.3. Spatial Spillover Effect of the Digital Economy and Carbon Emissions
3. Research Methodology, Variable Selection, and Data Sources
3.1. Empirical Model Setting
3.2. Description of Variables
3.2.1. Explained and Mediating Variables
3.2.2. Explanatory Variable
- Data dimensionless treatment.
- 2.
- Calculate the entropy value and weight.
- 3.
- Calculating the Digital Economy Score.
3.2.3. Control Variables
3.3. Data Source
4. Empirical Results
4.1. Estimation Results of the Benchmark Model
4.2. Mediating Effect Model Regression Results
4.3. Analysis of Spatial Spillover Effects
4.4. Analysis of Regional Heterogeneity
5. Robustness Test
6. Conclusions
7. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sheng, P.; Li, J.; Zhai, M.; Huang, S. Coupling of Economic Growth and Reduction in Carbon Emissions at the Efficiency Level: Evidence from China. Energy 2020, 213, 118747. [Google Scholar] [CrossRef]
- Irfan, M.; Elavarasan, R.M.; Yu, H.; Feng, M.; Dai, S. An Assessment of Consumers’ Willingness to Utilize Solar Energy in China: End-Users’ Perspective. J. Clean. Prod. 2021, 292, 126008. [Google Scholar] [CrossRef]
- Yc, A.; Ua, B.; Sa, C.; Zt, D. How do Technological Innovation and Fiscal Decentralization Affect the Environment? A story of the Fourth Industrial Revolution and Sustainable Growth. Technol. Forecast. Soc. Chang. 2021, 162, 120398. [Google Scholar]
- Cao, S.; Nie, L.; Sun, H.; Sun, W.; Taghizadeh-Hesary, F. Digital Finance, Green Technological Innovation and Energy-Environmental Performance: Evidence from China’s Regional Economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Odugbesan, J.A.; Akinsola, G.D.; Wong, W.-K.; Rjoub, H. Sustainability of Energy-Induced Growth Nexus in Brazil: Do Carbon Emissions and Urbanization Matter? Sustainability 2021, 13, 4371. [Google Scholar] [CrossRef]
- Zulu, K.; Singh, R.P.; Shaba, F.A. Environmental and Economic Analysis of Selected Pavement Preservation Treatments. Civ. Eng. J. 2020, 6, 210–224. [Google Scholar] [CrossRef]
- Farooq, M.U.; Shahzad, U.; Sarwar, S.; ZaiJun, L. The Impact of Carbon Emission and Forest Activities on Health Outcomes: Empirical Evidence from China. Environ. Sci. Pollut. Res. Int. 2019, 26, 12894–12906. [Google Scholar] [CrossRef]
- Feng, D.; Bolin, Y.; Tergel, H.; Yuanju, D.; Ying, W.; Shengnan, Z.; Ruyin, L. Drivers of Carbon Emission Intensity Change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [Google Scholar] [CrossRef]
- Ebi, K.L.; Ogden, N.H.; Semenza, J.C.; Woodward, A. Detecting and Attributing Health Burdens to Climate Change. Environ. Health Perspect. 2017, 125, 085004. [Google Scholar] [CrossRef]
- Jinghong, G.; Sari, K.; Sotiris, V.; Paul, W.; Alistair, W.; Jing, L.; Shaohua, G.; Xiaobo, L.; Haixia, W.; Jun, W.; et al. Public Health Co-Benefits of Greenhouse Gas Emissions Reduction: A Systematic Review. Sci. Total Environ. 2018, 627, 388–402. [Google Scholar] [CrossRef]
- Anthony, J.M.; Rosalie, E.W.; Simon, H. Climate Change And Human Health: Present and Future Risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Seal, A.; Vasudevan, C. Climate Change and Child Health. Arch. Dis. Child. 2011, 96, 1162–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, A. Health Benefits of a Low Carbon Economy. Public Health 2012, 126, S33–S39. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and Energy: How Does Internet Development Affect China’s Energy Consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Granell, C.; Havlik, D.; Schade, S.; Sabeur, Z.; Delaney, C.; Pielorz, J.; Uslander, T.; Mazzetti, P.; Schleidt, K.; Kobernus, M.; et al. Future Internet Technologies for Environmental Applications. Environ. Model. Softw. 2016, 78, 1–15. [Google Scholar] [CrossRef]
- Li, Z.; Li, N.; Wen, H. Digital Economy and Environmental Quality: Evidence from 217 Cities in China. Sustainability 2021, 13, 8058. [Google Scholar] [CrossRef]
- Avom, D.; Nkengfack, H.; Fotio, H.K.; Totouom, A. ICT and Environmental Quality in Sub-Saharan Africa: Effects and Transmission Channels. Technol. Forecast. Soc. Chang. 2020, 155, 120028. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.; Wang, Q.; Su, B. How Information and Communication Technology Drives Carbon Emissions: A Sector-level Analysis for China. Energy Econ. 2019, 81, 380–392. [Google Scholar] [CrossRef]
- Sorrell, S.; Dimitropoulos, J.; Sommerville, M. Empirical Estimates of the Direct Rebound Effect: A Review. Energy Policy 2009, 37, 1356–1371. [Google Scholar] [CrossRef]
- Deng, R.; Zhang, A. The Impact of Urban Digital Finance Development on Carbon Emission Performance in China and Mechanism. Resour. Sci. 2021, 43, 2316–2330. [Google Scholar] [CrossRef]
- Quibria, M.G.; Ahmed, S.N.; Tschang, T.; Reyes-Macasaquit, M.L. Digital Divide: Determinants and Policies with Special Reference to Asia. J. Asian Econ. 2003, 13, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Tewathia, N.; Kamath, A.; Ilavarasan, P.V. Social Inequalities, Fundamental Inequities, and Recurring of the Digital Divide: Insights from India. Technol. Soc. 2020, 61, 101251. [Google Scholar] [CrossRef]
- Bauer, J.M. The Internet and Income Inequality: Socio-Economic Challenges in a Hyperconnected Society. Telecommun. Policy 2018, 42, 333–343. [Google Scholar] [CrossRef]
- Edmund Ntom, U.; Merve, T. Energy Transition and Diversification: A Pathway to Achieve Sustainable Development Goals (Sdgs) in Brazil. Energy 2022, 239, 122199. [Google Scholar] [CrossRef]
- Kakali, K.; Sajal, G. Environmental Kuznet’s Curve for India: Evidence from Tests for Cointegration with Unknown Structuralbreaks. Energy Policy 2013, 56, 509–515. [Google Scholar] [CrossRef]
- Bowman, J.P. The Digital Economy: Promise and Peril in the Age of Networked Intelligence. Educom Rev. 1996, 10, 69–71. [Google Scholar]
- Moulton, B.R. GDP and the Digital Economy: Keeping up with the Changes, Understanding the Digital Economy: Data, Tools, and Research; MIT Press: Cambridge, MA, USA, 2000; pp. 34–48. [Google Scholar]
- Kling, R.; Lamb, R. IT and Organizational Change in Digital Economies. ACM SIGCAS Comput. Soc. 1999, 29, 17–25. [Google Scholar] [CrossRef]
- Bukht, R.; Heeks, R. Defining, Conceptualising and Measuring the Digital Economy. Int. Organ. Res. J. 2018, 13, 143–172. [Google Scholar] [CrossRef]
- Xu, Q.; Zhong, M.; Cao, M. Does Digital Investment Affect Carbon Efficiency? Spatial Effect and Mechanism Discussion. Sci. Total Environ. 2022, 827, 154321. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How does Technological Innovation Mitigate CO2 Emissions in OECD Countries? Heterogeneous Analysis Using Panel Quantile Regression. J. Environ. Manag. 2021, 280, 111818. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, Y.L.; Yang, B. Influence of Artificial Intelligence on Technological Innovation: Evidence from the Panel Data of China’s Manufacturing Sectors. Technol. Forecast. Soc. Chang. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Thompson, P.; Williams, R.; Thomas, B. Are UK SMEs with Active Websites More Likely to Achieve Both Innovation and Growth? Special ISSUE: E. J. Small Bus. Enterp. Dev. 2013, 20, 934–965. [Google Scholar] [CrossRef]
- Jorgenson, D.W.; Ho, M.S.; Samuels, J.D.; Stiroh, K.J. Industry Origins of the American Productivity Resurgence. Econ. Syst. Res. 2007, 19, 229–252. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does the Internet Development Affect Energy and Carbon Emission Performance? Sustain. Prod. Consum. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous Technological Change. J. Political Econ. 1990, 98, 71–102. [Google Scholar] [CrossRef] [Green Version]
- Howell, R.; Beers, C.V.; Doorn, N. Value Capture and Value Creation: The Role of Information Technology in Business Models for Frugal Innovations in Africa. Technol. Forecast. Soc. Chang. 2018, 131, 227–239. [Google Scholar] [CrossRef]
- Li, Y.; Ming, K.L.; Tan, Y.; Lee, S.Y.; Tseng, M.L. Sharing Economy to Improve Routing for Urban Logistics Distribution Using Electric Vehicles. Resour. Conserv. Recycl. 2020, 153, 104585. [Google Scholar] [CrossRef]
- Dong, J.Q.; Netten, J. Information Technology and External Search in the Open Innovation Age: New findings from Germany. Technol. Forecast. Soc. Chang. 2017, 120, 223–231. [Google Scholar] [CrossRef]
- Paunov, C.; Rollo, V. Has the Internet Fostered Inclusive Innovation in the Developing World? World Dev. 2016, 78, 587–609. [Google Scholar] [CrossRef] [Green Version]
- Hampton, S.E.; Strasser, C.A.; Tewksbury, J.J.; Gram, W.K.; Budden, A.E.; Batcheller, A.L.; Duke, C.S.; Porter, J.H. Big Data and the Future of Ecology. Front. Ecol. Environ. 2013, 11, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Choi, M.J. Ecological Views of Big Data: Perspectives and Issues. Telemat. Inform. 2015, 32, 311–320. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Xiao, J.J. The Impact of Digital Finance on Household Consumption: Evidence from China. Econ. Model. 2020, 86, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Cai, W.; Wang, C. Industrial CO2 Intensity, Indigenous Innovation and R&D Spillovers In China’s Provinces. Appl. Energy 2014, 131, 117–127. [Google Scholar]
- Abramovay, R. Decarbonizing the Growth Model of Brazil: Addressing Both Carbon and Energy Intensity. J. Environ. Dev. 2010, 19, 358–374. [Google Scholar] [CrossRef]
- Chang, N. Changing Industrial Structure to Reduce Carbon Dioxide Emissions: A Chinese Application. J. Clean. Prod. 2015, 103, 40–48. [Google Scholar] [CrossRef]
- Li, J.; Tan, Q.; Bai, J. Spatial Econometric Analysis of Regional Innovation Production in China–An Empirical Study Based on Static and Dynamic Spatial Panel Models. Manag. World 2010, 7, 43–55. [Google Scholar]
- Li, J.; Chen, L.; Chen, Y.; He, J. Digital Economy, Technological Innovation, and Green Economic Efficiency—Empirical Evidence from 277 Cities in China. Manag. Decis. Econ. 2021, 43, 616–629. [Google Scholar] [CrossRef]
- Li, H.S.; Geng, Y.C.; Shinwari, R.; Yangjie, W.; Rjoub, H. Does Renewable Energy Electricity and Economic Complexity Index Help to Achieve Carbon Neutrality Target of Top Exporting Countries? J. Environ. Manag. 2021, 299, 113386. [Google Scholar] [CrossRef]
- Long, X.; Chen, Y.; Du, J.; Oh, K.; Han, I. Environmental Innovation and its Impact on Economic and Environmental Performance: Evidence from Korean-Owned Firms in China. Energy Policy 2017, 107, 131–137. [Google Scholar] [CrossRef]
- Margaret, T. Beyond Technology-Push and Demand-Pull: Lessons from California’s Solar Policy. Energy Econ. 2008, 30, 2829–2854. [Google Scholar] [CrossRef]
- Zhang, H. Industrial Cluster Innovation Based on 5 G Network and Internet of Things. Microprocess. Microsyst. 2021, 83, 103974. [Google Scholar] [CrossRef]
- Baloch, M.A.; Ozturk, I.; Bekun, F.V.; Khan, D. Modeling the Dynamic Linkage between Financial Development, Energy Innovation, and Environmental Quality: Does Globalization Matter? Bus. Strategy Environ. 2020, 30, 176–184. [Google Scholar] [CrossRef]
- Zhiguo, L.; Jie, W. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-Level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Tian, X.; Bai, F.; Jia, J.; Liu, Y.; Shi, F. Realizing Low-Carbon Development in a Developing And Industrializing Region: Impacts of Industrial Structure Change on CO2 Emissions in Southwest China. J. Environ. Manag. 2019, 233, 728–738. [Google Scholar] [CrossRef]
- Li, Z.; Shao, S.; Shi, X.; Sun, Y.; Zhang, X. Transformation of Manufacturing, Natural Resource Dependence, and Carbon Emissions Reduction: Evidence of a Threshold Effect from China. J. Clean. Prod. 2018, 206, 920–927. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Wang, B. How does the New-Type Urbanisation Affect CO2 Emissions in China? An Empirical Analysis from the Perspective of Technological Progress. Energy Econ. 2019, 80, 917–927. [Google Scholar] [CrossRef]
- Yi, M.; Wang, Y.; Sheng, M.; Sharp, B.; Zhang, Y. Effects of Heterogeneous Technological Progress on Haze Pollution: Evidence from China. Ecol. Econ. 2020, 169, 106533. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-Private Partnerships Investment in Energy as New Determinant of CO2 Emissions: The Role of Technological Innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Li, Z.; Yang, C. Spatial Interaction Spillover Effects between Digital Financial Technology and Urban Ecological Efficiency in China: An Empirical Study Based on Spatial Simultaneous Equations. Int. J. Environ. Res. Public Health 2021, 18, 8535. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Deng, Y.; Zhou, J.; Wu, J.; Pang, Q. Spatial Spillover Effect of Carbon Emission Efficiency in the Construction Industry of China. Environ. Sci. Pollut. Res. 2022, 29, 2466–2479. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, W.; Su, X.; Ren, S.; Ran, Q.; Wang, J.; Cao, J. Analysis of the Influence of Land Finance on Haze Pollution: An Empirical Study Based on 269 Prefecture-Level Cities in China. Growth Chang. 2022, 1–34. [Google Scholar] [CrossRef]
- Zeng, C.; Stringer, L.C.; Lv, T. The Spatial Spillover Effect of Fossil Fuel Energy Trade on CO2 Emissions. Energy 2021, 223, 120038. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Cao, J.; Ren, S.; Ran, Q.; Wu, H. The Spatial Spillover Effect of Urban Sprawl and Fiscal Decentralization on Air Pollution: Evidence from 269 Cities in China. Empir. Econ. 2021, 63, 847–875. [Google Scholar] [CrossRef]
- Yilmaz, S.; Haynes, K.E.; Dinc, M. Geographic and Network Neighbors: Spillover Effects of Telecommunications Infrastructure. J. Reg. Sci. 2010, 42, 339–360. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Lei, Y.; Li, S.; Li, L. Exploring Spatial Characteristics of City-Level CO2 Emissions in China and their Influencing Factors from Global and Local Perspectives. Sci. Total Environ. 2021, 754, 142206. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Hou, J.; Liu, H. Testing and Application of the Mediating Effects. Acta Psychol. Sin. 2004, 36, 614–620. [Google Scholar]
- Lee, L.F.; Yu, J. Efficient GMM Estimation of Spatial Dynamic Panel Data Models with Fixed Effects. J. Econom. 2014, 180, 174–197. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Liang, Z.; Hu, S.; Wu, G. Effects of Emission Trading System on Green Total Factor Productivity in China: Empirical Evidence from a Quasi-Natural Experiment. J. Clean. Prod. 2021, 294, 126262. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Ren, S.; Ran, Q.; Zhang, J. Does the development of the internet contribute to air pollution control in China? Mechanism discussion and empirical test. Struct. Chang. Econ. Dyn. 2021, 56, 207–224. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy Structure, Digital Economy, and Carbon Emissions: Evidence from China. Environ. Sci. Pollut. Res. Int. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, B.; Pinto, U. Is Urbanisation also the Culprit of Climate Change?–Evidence from Australian Cities. Urban. Clim. 2020, 31, 100581. [Google Scholar] [CrossRef]
- Mahadevan, R.; Sun, Y. Effects of Foreign Direct Investment on Carbon Emissions: Evidence from China and Its Belt and Road Countries. J. Environ. Manag. 2020, 276, 111321. [Google Scholar] [CrossRef] [PubMed]
- Knapp, T.; Mookerjee, R. Population Growth and Global CO2 Emissions: A Secular Perspective. Energy Policy 1996, 24, 31–37. [Google Scholar] [CrossRef]
- Kuang, C.; Lu, J. Research on the Influence of Environmental Regulation on Green Technology Innovation–Evidence from Hunan Province. Econ. Surv. 2019, 36, 126–132. [Google Scholar]
- Zhang, X.; Geng, Y.; Shao, S.; Wilson, J.; You, W. China’s Non-Fossil Energy Development and its 2030 CO2 Reduction Targets: The role of Urbanization. Appl. Energy 2020, 261, 114353. [Google Scholar] [CrossRef]
- Xu, F.; Huang, Q.; Yue, H.; He, C.; Zhang, H. Reexamining the Relationship between Urbanization and Pollutant Emissions in China based on the STIRPAT Model. J. Environ. Manag. 2020, 273, 111134. [Google Scholar] [CrossRef]
- Baron, M.R.; Kenny, A.D. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Personal. Soc. Psychol. 1999, 51, 1173. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS Procedures for Estimating Indirect Effects in Simple Mediation Models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Pace, R.K.; Lesage, J.P. A Sampling Approach to Estimate the Log Determinant Used in Spatial Likelihood Problems. J. Geogr. Syst. 2009, 11, 209–225. [Google Scholar] [CrossRef]
Target Level | Criterion Level | Index Level | Unit | Indicator Direction |
---|---|---|---|---|
Digital economy | Digital economy foundation | Internet penetration rate | % | + |
Number of cell phone base stations | Million | + | ||
Length of fiber optic cable lines per capita | Km/million people | + | ||
Cell phone penetration rate | % | + | ||
Digital industrialization | Total amount of telecommunications business | Billion yuan | + | |
Fixed asset investment of information transmission and computer services, and software industry | Billion yuan | + | ||
Software business income | Million yuan | + | ||
Total technology contract turnover | Million yuan | + | ||
Number of patent applications granted | / | + | ||
R&D funding | Billion yuan | + | ||
Output value of information service industry | Billion yuan | + | ||
Industrial digitalization | The number of websites per 100 enterprises | / | + | |
Proportion of enterprises with e-commerce transaction | % | + | ||
E-commerce transaction amount | Million yuan | + | ||
Digital economy penetration | Breadth of digital financial coverage | / | + | |
Depth of digital financial usage | / | + | ||
Digital financial digitization | / | + | ||
Online mobile payment level | / | + |
Variables | Observations | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
CE | 330 | 5.6050 | 0.7730 | 3.5680 | 7.4380 |
Dig | 330 | 0.1450 | 0.1130 | 0.0221 | 0.6870 |
Struc | 330 | 0.4440 | 0.0867 | 0.1620 | 0.5900 |
Inv | 330 | 9.8140 | 1.4900 | 5.5760 | 13.1800 |
PGDP | 330 | 10.3100 | 0.4200 | 9.2170 | 11.2800 |
Urban | 330 | 0.5640 | 0.1270 | 0.2990 | 0.8960 |
Open | 330 | 0.2710 | 0.3110 | 0.0127 | 1.5480 |
FDI | 330 | 0.0207 | 0.0158 | 0.0001 | 0.0819 |
Pop | 330 | 8.1970 | 0.7380 | 6.3240 | 9.3520 |
ER | 330 | 39.0200 | 3.9300 | 27.1000 | 55.1000 |
Variables | RE | FE | Difference | S.E. |
---|---|---|---|---|
Dig | −0.616 | −0.738 | 0.122 | 0.028 |
FDI | −0.376 | −1.004 | 0.628 | 0.183 |
PGDP | 0.177 | 0.164 | 0.012 | 0.000 |
Urban | 1.848 | 1.996 | −0.148 | 0.139 |
Open | 0.072 | −0.090 | 0.162 | −0.048 |
POP | 1.121 | 0.794 | 0.327 | 0.351 |
ER | 0.011 | 0.012 | −0.001 | 0.000 |
chi2(7) = 15.26 | Probability > chi2 = 0.0328 |
Variables | FE1 | FE2 | FE3 | FE4 |
---|---|---|---|---|
Dig | −0.762 *** | −0.813 *** | −0.568 ** | −0.484 * |
(−3.244) | (−3.371) | (−2.049) | (−1.747) | |
FDI | 0.571 | 0.161 | 0.440 | |
(0.662) | (0.187) | (0.504) | ||
PGDP | 0.067 | −0.084 | −0.091 | |
(0.911) | (−0.967) | (−1.046) | ||
Urban | 2.000 *** | 1.925 *** | ||
(3.004) | (2.888) | |||
Open | −0.056 | −0.008 | ||
(−0.408) | (−0.057) | |||
Pop | 0.801 ** | |||
(2.126) | ||||
ER | 0.007 | |||
(1.249) | ||||
Constant | 5.417 *** | 4.735 *** | 5.257 *** | −1.449 |
(189.316) | (6.490) | (7.103) | (−0.464) | |
Year FE | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES |
Observations | 30 | 30 | 30 | 30 |
R-squared | 0.407 | 0.410 | 0.435 | 0.447 |
Variables | Y = Struc | Y = Inv | Y = CE | Y = CE |
---|---|---|---|---|
Dig | −0.004 | 2.460 *** | −0.480 * | −0.262 |
(−0.098) | (5.757) | (−1.751) | (−0.900) | |
Struc | 1.019 *** | |||
(2.743) | ||||
Inv | −0.091 ** | |||
(−2.368) | ||||
FDI | 0.070 | −0.927 | 0.369 | 0.356 |
(0.503) | (−0.689) | (0.427) | (0.411) | |
PGDP | 0.137 *** | 0.127 | −0.230 ** | −0.079 |
(9.964) | (0.951) | (−2.308) | (−0.919) | |
Urban | 0.062 | 0.133 | 1.862 *** | 1.937 *** |
(0.588) | (0.129) | (2.823) | (2.929) | |
Open | −0.042 * | 0.209 | 0.035 | 0.011 |
(−1.927) | (0.982) | (0.254) | (0.080) | |
Pop | 0.053 | 3.797 *** | 0.746 ** | 1.145 *** |
(0.893) | (6.542) | (2.002) | (2.856) | |
ER | 0.000 | 0.013 | 0.007 | 0.008 |
(0.062) | (1.544) | (1.253) | (1.470) | |
Constant | −1.357 *** | −31.640 *** | −0.066 | −4.315 |
(−2.750) | (−6.582) | (−0.021) | (−1.299) | |
Year FE | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes |
Observations | 330 | 330 | 330 | 330 |
R-squared | 0.863 | 0.547 | 0.462 | 0.458 |
Variables | Coefficient | z-Value | p-Value | |
---|---|---|---|---|
Struc | Direct effect | −1.378 | −3.56 | 0.000 |
Indirect effect | −0.691 | −3.01 | 0.003 | |
Inv | Direct effect | −1.598 | −4.26 | 0.000 |
Indirect effect | −0.472 | −2.95 | 0.003 |
Year | Moran’s I | E | sd | z | p |
---|---|---|---|---|---|
2009 | 0.183 | −0.034 | 0.012 | 1.964 | 0.025 |
2010 | 0.192 | −0.034 | 0.012 | 2.048 | 0.020 |
2011 | 0.208 | −0.034 | 0.012 | 2.187 | 0.014 |
2012 | 0.201 | −0.034 | 0.012 | 2.125 | 0.017 |
2013 | 0.227 | −0.034 | 0.012 | 2.362 | 0.009 |
2014 | 0.213 | −0.034 | 0.012 | 2.236 | 0.013 |
2015 | 0.215 | −0.034 | 0.012 | 2.254 | 0.012 |
2016 | 0.199 | −0.034 | 0.012 | 2.108 | 0.018 |
2017 | 0.191 | −0.034 | 0.012 | 2.034 | 0.021 |
2018 | 0.186 | −0.034 | 0.012 | 1.992 | 0.023 |
2019 | 0.176 | −0.034 | 0.012 | 1.903 | 0.029 |
Year | Moran’s I | E | sd | z | p |
---|---|---|---|---|---|
2009 | 0.099 | −0.034 | 0.012 | 1.209 | 0.113 |
2010 | 0.114 | −0.034 | 0.012 | 1.340 | 0.090 |
2011 | 0.086 | −0.034 | 0.012 | 1.090 | 0.138 |
2012 | 0.146 | −0.034 | 0.012 | 1.629 | 0.052 |
2013 | 0.130 | −0.034 | 0.012 | 1.482 | 0.069 |
2014 | 0.132 | −0.034 | 0.012 | 1.503 | 0.066 |
2015 | 0.134 | −0.034 | 0.012 | 1.525 | 0.064 |
2016 | 0.119 | −0.034 | 0.012 | 1.388 | 0.083 |
2017 | 0.104 | −0.034 | 0.012 | 1.247 | 0.106 |
2018 | 0.100 | −0.034 | 0.012 | 1.218 | 0.112 |
2019 | 0.094 | −0.034 | 0.012 | 1.161 | 0.123 |
Variables | Main | Wx | LR_Direct | LR_Indirect | LR_Total |
---|---|---|---|---|---|
Dig | −0.854 *** | 1.357 *** | −0.865 *** | 1.335 *** | 0.470 |
(−3.382) | (3.043) | (−3.377) | (3.111) | (0.995) | |
FDI | 0.556 | 6.260 *** | 0.438 | 6.091 *** | 6.530 *** |
(0.701) | (3.153) | (0.581) | (3.322) | (3.181) | |
PGDP | −0.032 | −0.198 | −0.022 | −0.182 | −0.204 |
(−0.422) | (−1.448) | (−0.292) | (−1.423) | (−1.429) | |
Urban | 1.679 *** | 2.724 ** | 1.606 *** | 2.444 ** | 4.050 *** |
(2.808) | (2.313) | (2.856) | (2.239) | (3.419) | |
Open | −0.094 | −0.056 | −0.087 | −0.030 | −0.117 |
(−0.778) | (−0.215) | (−0.705) | (−0.115) | (−0.421) | |
Pop | 0.854 ** | 1.198 | 0.854 *** | 1.084 | 1.938 ** |
(2.529) | (1.619) | (2.599) | (1.502) | (2.239) | |
ER | 0.008 * | 0.001 | 0.008 | 0.000 | 0.008 |
(1.695) | (0.052) | (1.634) | (0.012) | (0.701) | |
Year FE | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes |
Observations | 330 | 330 | 330 | 330 | 330 |
R-squared | 0.413 | 0.413 | 0.413 | 0.413 | 0.413 |
Variables | East | Middle | West |
---|---|---|---|
Dig | −1.199 *** | −13.057 *** | −5.197 ** |
(-5.092) | (−4.549) | (−2.484) | |
Wx | −1.035 ** | 1.219 | −17.991 *** |
(-2.484) | (0.354) | (−2.975) | |
LR_Direct | −1.120 *** | −13.148 *** | −4.542 ** |
(-4.716) | (−4.189) | (−2.239) | |
LR_Indirect | −0.746 ** | −1.411 | −15.748 *** |
(-2.034) | (−0.323) | (−2.948) | |
LR_Total | −1.866 *** | −14.559 ** | −20.289 *** |
(-4.193) | (−2.217) | (−3.225) | |
ρ | −0.204 ** | 0.190 ** | −0.132 |
(−2.201) | (2.222) | (−0.853) | |
Control Variables | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
Observations | 121 | 88 | 121 |
R-squared | 0.965 | 0.055 | 0.011 |
Variables | Y = CE | Y = CE | Y = PCE |
---|---|---|---|
X = DFI | X = L.DFI | X = Dig | |
X | −0.003 ** | −0.003 ** | −12.284 ** |
(0.001) | (0.001) | (5.334) | |
FDI | 0.986 | 0.534 | 22.180 |
(0.883) | (0.867) | (16.804) | |
PGDP | −0.017 | −0.001 | −5.605 *** |
(0.097) | (0.087) | (1.670) | |
Urban | 0.769 | 0.124 | 38.790 *** |
(0.802) | (0.776) | (12.822) | |
Open | 0.185 | 0.230 * | −3.716 |
(0.134) | (0.136) | (2.660) | |
Pop | 1.905 *** | 2.411 *** | 6.444 |
(0.525) | (0.582) | (7.243) | |
ER | −0.009 | −0.009 | 0.126 |
(0.006) | (0.006) | (0.104) | |
Constant | −9.847 ** | −13.750 *** | −11.887 |
(4.167) | (4.563) | (59.991) | |
Year FE | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes |
Observations | 270 | 240 | 330 |
R-squared | 0.175 | 0.187 | 0.250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Liu, B.; Yu, Z.; Cao, J. Effects of the Digital Economy on Carbon Emissions: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9450. https://doi.org/10.3390/ijerph19159450
Zhu Z, Liu B, Yu Z, Cao J. Effects of the Digital Economy on Carbon Emissions: Evidence from China. International Journal of Environmental Research and Public Health. 2022; 19(15):9450. https://doi.org/10.3390/ijerph19159450
Chicago/Turabian StyleZhu, Zhichuan, Bo Liu, Zhuoxi Yu, and Jianhong Cao. 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China" International Journal of Environmental Research and Public Health 19, no. 15: 9450. https://doi.org/10.3390/ijerph19159450
APA StyleZhu, Z., Liu, B., Yu, Z., & Cao, J. (2022). Effects of the Digital Economy on Carbon Emissions: Evidence from China. International Journal of Environmental Research and Public Health, 19(15), 9450. https://doi.org/10.3390/ijerph19159450