Study on Emission Characteristics and Emission Reduction Effect for Construction Machinery under Actual Operating Conditions Using a Portable Emission Measurement System (Pems)
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Equipment
2.2. Selection of Experimental Machinery and Emission Reduction Techniques
2.3. Design of Experimental Conditions
2.4. Experiment Implementation Process
2.5. Data Analysis of Experimental Results
2.5.1. Quality Control and Processing of Experimental Data
2.5.2. Analysis of Experimental Data
3. Results and Discussion
3.1. Emission Characteristics of Different Types of Machinery
3.2. Emission Reduction Characteristics of Different Emission Reduction Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desouza, C.D.; Marsh, D.J.; Beevers, S.D.; Molden, N.; Green, D.C. Real-world emissions from non-road mobile machinery in London. Atmos. Environ. 2020, 223, 117301. [Google Scholar] [CrossRef]
- Xia, Z. Research on the Emission Characteristics of Gaseous and Particulate Pollutants from Construction Machinery Based on Actual Measurement. Master’s Thesis, South China University of Technology, Guangzhou, China, 1 June 2017. (In Chinese). [Google Scholar]
- Myung, C.L.; Lee, H.; Choi, K.; Lee, Y.J.; Park, S. Effects of gasoline, diesel, LPG, and low-carbon fuels and various certification modes on nanoparticle emission characteristics in light-duty vehicles. Int. J. Automot. Technol. 2009, 10, 537–544. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Desouza, C.D.; Marsh, D.J.; Beevers, S.D.; Molden, N.; Green, D.C. A spatial and fleet disaggregated approach to calculating the NOX emissions inventory for non-road mobile machinery in London. Atmos. Environ. X 2021, 12, 100125. [Google Scholar] [CrossRef]
- Liu, P.; Tang, J.; Hu, M.; Zhai, S. Comparative analysis of emission standards for non-road mobile machinery in China and Europe and the United States. Chin. J. Environ. Manag. 2021, 13, 66–73. [Google Scholar]
- Li, P.; Lü, L. Evaluating the Real-World NOx Emission from a China VI Heavy-Duty Diesel Vehicle. Appl. Sci. 2021, 11, 1335. [Google Scholar] [CrossRef]
- Tan, D.; Tan, J.; Peng, D.; Fu, M.; Zhang, H.; Yin, H.; Ding, Y. Study on real-world power-based emission factors from typical construction machinery. Sci. Total Environ. 2021, 799, 149436. [Google Scholar] [CrossRef]
- Luján, J.M.; Bermúdez, V.; Dolz, V.; Monsalve-Serrano, J. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmos. Environ. 2018, 174, 112–121. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Ma, C.; Zhang, Y.; Wu, L.; Mao, H. Emission characteristics and chemical composition of particulate matter emitted by typical non-road construction machinery. Atmos. Pollut. Res. 2020, 11, 679–685. [Google Scholar] [CrossRef]
- Abolhasani, S.; Frey, H.C.; Kim, K.; Rasdorf, W.; Lewis, P.; Pang, S.H. Real-world in-use activity, fuel use, and emissions for nonroad construction vehicles: A case study for excavators. J. Air Waste Manag. Assoc. 2008, 58, 1033–1046. [Google Scholar] [CrossRef] [Green Version]
- Lijewski, P.; Merkisz, J.; Fuc, P.; Kozak, M.; Rymaniak, L. Air Pollution by the Exhaust Emissions from Construction Machinery under Actual Operating Conditions. Appl. Mech. Mater. 2013, 390, 313–390. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L. Research on Emission Characteristics of Non-road Mobile Machinery Based on Power. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 032014. [Google Scholar] [CrossRef]
- Cao, T.; Russell, R.L.; Durbin, T.D.; Cocker, D.R., 3rd; Burnette, A.; Calavita, J.; Maldonado, H.; Johnson, K.C. Characterization of the emissions impacts of hybrid excavators with a portable emissions measurement system (PEMS)-based methodology. Sci. Total Environ. 2018, 635, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Heidari, B.; Marr, L.C. Real-time emissions from construction equipment compared with model predictions. J. Air Waste Manag. Assoc. 2015, 65, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Liao, J.; Hu, Y.; Lei, J.; Zhong, J.; Yan, F.; Cai, Z. Experimental investigation on emission characteristics of non-road diesel engine equipped with integrated DOC + CDPF + SCR aftertreatment. Fuel 2021, 305, 121586. [Google Scholar] [CrossRef]
- Sadashiva Prabhu, S.; Nayak, N.S.; Kapilan, N.; Hindasageri, V. An experimental and numerical study on effects of exhaust gas temperature and flow rate on deposit formation in Urea-Selective Catalytic Reduction (SCR) system of modern automobiles. Appl. Therm. Eng. 2017, 111, 1211–1231. [Google Scholar] [CrossRef]
- Prati, M.V.; Costagliola, M.A.; Giuzio, R.; Corsetti, C.; Beatrice, C. Emissions and energy consumption of a plug-in hybrid passenger car in Real Driving Emission (RDE) test. Transp. Eng. 2021, 4, 100069. [Google Scholar] [CrossRef]
- Roberto, A.; Barouch, G.; Luís, S.; Gonçalo, D. Comparison of Portable Emissions Measurement Systems (PEMS) with Laboratory Grade Equipment. Appl. Sci. 2018, 8, 1633. [Google Scholar]
- Seokjoo, K.; Sangil, K.; Jongtae, L.; Seonil, O.; Youngho, S.; Sungwook, P.; Mun, S. Data Evaluation Methods for Real Driving Emissions using Portable Emissions Measurement System(PEMS). Trans. Korean Soc. Mech. Eng. 2015, 39, 965–973. [Google Scholar]
- Wang, Y.; Wang, J.; Hao, C.; Wang, X.; Li, Q.; Zhai, J.; Ge, Y.; Hao, L.; Tan, J. Characteristics of instantaneous particle number (PN) emissions from hybrid electric vehicles under the real-world driving conditions. Fuel 2021, 286, 119466. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, D.-m.; Tan, P.-q.; Hu, Z.-y.; Fang, L. Emission characteristic of non-road mobile machinery using a catalysed diesel particle filter with different catalyst loadings under actual operating conditions. J. Clean. Prod. 2021, 327, 129482. [Google Scholar] [CrossRef]
- He, W.; Cheng, Y.; Liu, Y.; Wang, C.; Fang, X.; Feng, Q.; Zhu, X. Analysis of Real-World Fuel Consumption Characteristics of Heavy-Duty Commercial Diesel Vehicle Based on OBD Method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 774, 012137. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Ge, Y.; Tan, J.; Zeng, T.; Liang, B. Characteristics of typical non-road machinery emissions in China by using portable emission measurement system. Sci. Total Environ. 2012, 437, 255–261. [Google Scholar] [CrossRef]
- Pang, K.; Zhang, K.; Ma, S.; Wang, F. Chinese construction machinery usage characteristics and its tail gas emission trends. Environ. Sci. 2020, 41, 1132–1142. (In Chinese) [Google Scholar]
- Frey, H.C.; Rasdorf, W.; Lewis, P. Comprehensive Field Study of Fuel Use and Emissions of Nonroad Diesel Construction Equipment. Transp. Res. Rec. 2010, 2158, 69–76. [Google Scholar] [CrossRef]
- Announcement on the Release of Five Technical Guidelines Including the Technical Guidelines for the Preparation of Primary Source Emission Inventory of Inhalable Particulate Matter (Trial). Available online: https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm (accessed on 31 December 2014).
- Wang, F.; Hou, Y.; Gao, W.; Wang, Y.; Lang, J.; Feng, G. Comparative study on the characteristics of copper-based and vanadium-based SCR catalysts for China VI diesel engine. Veh. Engine 2020, 1, 31–37. (In Chinese) [Google Scholar]
- Hu, S.; Deng, B.; Wu, D.; Hou, K. Energy flow behavior and emission reduction of a turbo-charging and EGR non-road diesel engine equipped with DOC and DPF under NRTC (non-road transient cycle). Fuel 2021, 305, 121571. [Google Scholar] [CrossRef]
- Shao, S.; Cheng, J.; Zhang, B.; Ma, N.; Zhang, D.; Wang, Y.; Zhong, H.; Tian, J.; Cheng, J.; Hu, N.; et al. Effects of a DOC+DPF system on emission characteristics of China Π engineering vehicle diesel engine and influence factors of trapping efficiency of PM for DOC+DPF system. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 41, 527–541. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, D.; Tan, P.; Hu, Z. Experimental study on the particulate matter and nitrogenous compounds from diesel engine retrofitted with DOC+CDPF+SCR. Atmos. Environ. 2018, 177, 45–53. [Google Scholar] [CrossRef]
- Ummel, L.; Price, K. Performance and Sulfur Effect Evaluation of Tier 4 DOC+SCR Systems for Vanadia, Iron, and Copper SCR. SAE Int. J. Engines 2014, 7, 1244–1251. [Google Scholar] [CrossRef]
- Sun, W.; Wang, L.; Sun, K.; Bai, S.; Li, G. Effects of DOC+DPF+SCR Aftertreatment System on Performance and Emission of Small Diesel Engines. Intern. Combust. Engine Power Plant 2019, 36, 1–6. (In Chinese) [Google Scholar]
- Zhang, Y.; Lou, D.; Tan, P.; Hu, Z. Experimental study on the emission characteristics of a non-road diesel engine equipped with different after-treatment devices. Environ. Sci. Pollut. Res. Int. 2019, 26, 26617–26627. [Google Scholar] [CrossRef]
No. | Mechanical Type | Machine Brand | Engine Brand | Engine Model | Engine Rated Power (kw) | Rated Speed (r/min) | Engine Cylinders | Engine Displacement (L) | Emission Stage | Emission Reduction Techniques |
---|---|---|---|---|---|---|---|---|---|---|
1 | Forklift | HELI | ISUZU | ISUZU C240PKJ | 35.4 | 2500 | 4 | 2.4 | China-I | Enhanced model 3DOC + CDPF |
2 | Forklift | HELI | ISUZU | ISUZU C240PKJ | 35.4 | 2500 | 4 | 2.4 | China-I | Burner + DOC + CDPF |
3 | Loader | LIUGONG | WEICHAI | WD625G 220 | 162 | 2100 | 6 | 9.7 | China-II | DOC + CDPF + Copper-based molecular sieves SCR + ASC |
4 | Excavator | YUCHAI | CUMMINS | M22 | 298 | 2100 | 6 | 10.8 | China-II | DOC + CDPF + Vanadium based SCR + ASC |
5 | Excavator | BONNY | CUMMINS | QSM22 | 268 | 2100 | 6 | 10.8 | China-III | DOC + CDPF + Vanadium based SCR + ASC |
6 | Excavator | BONNY | CUMMINS | QSB7 | 169 | 2050 | 6 | 6.7 | China-III | Clean fuel + lubricant additives |
7 | Excavator | BONNY | CUMMINS | QSB7 | 169 | 2050 | 6 | 6.7 | China-III | DOC + CDPF + Copper-based molecular sieves SCR + ASC |
8 | Grabber | BONNY | CUMMINS | Match only | 180 | 2000 | 6 | 6.7 | China-IV | DOC + CDPF + Copper-based molecular sieves SCR + ASC |
Mechanical Type | Power Range | Emission Standards | CO | HC | NO | PM | Remark | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Idling | Walking | Working | Idling | Walking | Working | Idling | Walking | Working | Idling | Walking | Working | ||||
Forklift | <37 | China-I | 70.8 | 60.9 | 59.9 | 53.6 | 49.1 | 48.6 | 31.2 | 37.1 | 39 | 3.1 | 3.5 | 4.2 | This Study (Table 1 No. 1) |
Forklift | <37 | China-I | 60.3 | 55.1 | 53.3 | 49.7 | 45.7 | 46.4 | 9.4 | 10 | 10.7 | 3.2 | 3.9 | 4.6 | This Study (Table 1 No. 2) |
Forklift | 37 ≤ p < 75 | China-0 | 43.7 | 9.6 | 26.3 | 14.2 | 12 | 10.9 | 8.8 | 10.1 | 14.9 | 4.9 | 1.3 | 8.1 | Pang [25] |
Forklift | 75 ≤ p < 130 | China-I | 27.3 | 23.7 | 16.7 | 6.7 | 6.6 | 3.6 | 15.9 | 20.7 | 13.7 | 1.7 | 15.3 | 3.4 | Pang [25] |
Loader | p ≥ 130 | China-II | 21.3 | 24.6 | 17.2 | 13.8 | 13.1 | 7.9 | 25.6 | 25.9 | 23.8 | 0.6 | 0.7 | 0.8 | This Study (Table 1 No. 3) |
Loader | p ≥ 130 | China-II | 43.5 | 32.3 | 23.1 | 3.5 | 1.8 | 0.4 | 3.2 | 9 | 7.7 | 5.4 | 4.7 | 1.9 | Pang [25] |
Loader | / | / | 21.4 | 1.2 | 60.1 | 4 | Xia [2] | ||||||||
Loader | / | / | 17.5 | 7.6 | 83.4 | 1.5 | Frey [26] | ||||||||
Loader | / | / | 11 | 6 | 42.6 | 0.3 | Fu [24] | ||||||||
Excavator | p ≥ 130 | China-II | 8.8 | 4.9 | 11.5 | 3.4 | 2.4 | 2.6 | 52.9 | 52 | 36.1 | 0.3 | 0.2 | 1 | This Study (Table 1 No. 4) |
Excavator | p ≥ 130 | China-II | 14.5 | 15.9 | 5.9 | 4.3 | 2.3 | 2.4 | 20.1 | 32.8 | 22.4 | 1.1 | 3.1 | 2.5 | Pang [25] |
Excavator | p ≥ 130 | China-III | 16.6 | 9 | 22.7 | 5.2 | 2.6 | 3.9 | 21.6 | 21.5 | 15.4 | 0.5 | 0.4 | 1.2 | This Study (Table 1 No. 5) |
Excavator | 37 ≤ p < 75 | China-III | 28.9 | 12.3 | 11.3 | 9.6 | 0.9 | 0.8 | 19.9 | 49 | 45.3 | 3.6 | 2.3 | 3.9 | Pang [25] |
Excavator | / | / | 12.9 | 1.3 | 54.9 | 6.6 | Xia [2] | ||||||||
Excavator | / | / | 7.9 | 6 | 42.6 | 0.3 | Fu [24] | ||||||||
Excavator | / | / | 11.7 | 3.3 | 31.1 | 1.4 | Frey [26] |
No. | Emission Reduction Techniques | CO | THC | NOX | PM | Experimental Conditions | Source |
---|---|---|---|---|---|---|---|
1 | Enhanced model 3DOC + CDPF | 49.5% | 89.8% | / | 99.5% | Actual operating conditions | This study |
2 | Burner + DOC + CDPF | 91.7% | 95.1% | / | 99.4% | ||
3 | DOC + CDPF + Copper-based molecular sieves SCR + ASC | 92.8% | 90.9% | 80.5% | 97.5% | ||
4 | DOC + CDPF + Vanadium based SCR + ASC | 79.5% | 85.5% | 67.3% | 87.2% | ||
5 | DOC + CDPF + Vanadium based SCR + ASC | 94.8% | 92.7% | 60.3% | 99.3% | ||
6 | Clean fuel + lubricant additives | 12.8% | / | / | 72% | ||
7 | DOC + CDPF + Copper-based molecular sieves SCR + ASC | 41.6% | / | 70.6% | 98.9% | ||
8 | DOC + CDPF + Copper-based molecular sieves SCR + ASC | 78.2% | / | 76.5% | 96.6% | ||
9 | DOC + CDPF + SCR | 97.6% | 98.1% | 90% | 98% | NRSC | Hu [16] |
10 | DOC + CDPF + SCR | 55% | 57.1% | 57.7% | 95% | NRTC | Hu [16] |
11 | EGR + DOC + DPF | Nearly 100% | Nearly 100% | 24.3% | / | NRTC | Hu [29] |
12 | DOC + DPF | 85% | 50–80% | / | 90% | Double idle + free acceleration | Shao [30] |
13 | DOC + CDPF | / | / | 85% | 90.9% | NRTC | Zhang [31] |
14 | DOC + SCR | / | / | 90% | / | NRTC | Ummel [32] |
15 | DOC + DPF + SCR | 97% | 86% | 70% | 80% | NRSC | Sun [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Li, Y.; Meng, Z.; Feng, X.; Wang, J.; Zhou, H.; Li, J.; Shi, J.; Chen, Q.; Shi, H.; et al. Study on Emission Characteristics and Emission Reduction Effect for Construction Machinery under Actual Operating Conditions Using a Portable Emission Measurement System (Pems). Int. J. Environ. Res. Public Health 2022, 19, 9546. https://doi.org/10.3390/ijerph19159546
Chen J, Li Y, Meng Z, Feng X, Wang J, Zhou H, Li J, Shi J, Chen Q, Shi H, et al. Study on Emission Characteristics and Emission Reduction Effect for Construction Machinery under Actual Operating Conditions Using a Portable Emission Measurement System (Pems). International Journal of Environmental Research and Public Health. 2022; 19(15):9546. https://doi.org/10.3390/ijerph19159546
Chicago/Turabian StyleChen, Junhui, Yuan Li, Zhongwei Meng, Xiaoqiong Feng, Junjie Wang, Honghui Zhou, Junjie Li, Jiacheng Shi, Qiang Chen, Hongle Shi, and et al. 2022. "Study on Emission Characteristics and Emission Reduction Effect for Construction Machinery under Actual Operating Conditions Using a Portable Emission Measurement System (Pems)" International Journal of Environmental Research and Public Health 19, no. 15: 9546. https://doi.org/10.3390/ijerph19159546
APA StyleChen, J., Li, Y., Meng, Z., Feng, X., Wang, J., Zhou, H., Li, J., Shi, J., Chen, Q., Shi, H., & Wang, S. (2022). Study on Emission Characteristics and Emission Reduction Effect for Construction Machinery under Actual Operating Conditions Using a Portable Emission Measurement System (Pems). International Journal of Environmental Research and Public Health, 19(15), 9546. https://doi.org/10.3390/ijerph19159546