Fog–Haze Transition and Drivers in the Coastal Region of the Yangtze River Delta
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observation Site and Measurements
2.2. LVEs Classification and Meteorological Data
2.3. CCN Efficiency Spectra and Hygroscopicity Parameter
3. Results and Discussion
3.1. Overview of Targeted LVEs
3.2. Characteristics of LVEs
3.2.1. Thermodynamic Situation
3.2.2. Microphysical Properties
3.2.3. Fog Microstructure
3.3. LVEs Evolution and Driving Factors
3.3.1. Footmark of LVEs Evolution
3.3.2. Mechanism of LVEs Formation and Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Liu, Y. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci. 2014, 57, 36–46. [Google Scholar] [CrossRef]
- Lyu, R.; Wang, Y.; Peng, Y.; Gao, W.; Yang, H.; Tan, X.; He, Q.; Cheng, T.; Zhang, R. Long-term variation characteristics and influencing factors of low-visibility events on the coast of China. Atmos. Res. 2021, 257, 105583. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.H.; Liu, D.Y.; Yan, W.L.; Wang, H.B.; Zhu, C.Y.; Zhu, Y.Y.; Zu, F. Dense fog burst reinforcement over Eastern China: A review. Atmos. Res. 2019, 230, 104639. [Google Scholar] [CrossRef]
- An, Z.; Huang, R.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, F.; Li, Z.; Li, C.; Lee, K.; Wang, M. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res.-Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, Z.; Li, J.; Chu, Y.; Tan, W.; Li, C. Impacts of meteorology and emission control on the abnormally low particulate matter concentration observed during the winter of 2017. Atmos. Environ. 2020, 225, 117377. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, B.; Kang, H. Long-Term Fog Variation and Its Impact Factors over Polluted Regions of East China. J. Geophys. Res. Atmos. 2019, 124, 1741–1754. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Li, K.; Liao, H.; Wang, H.; Wu, L. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Chang. 2017, 7, 257. [Google Scholar] [CrossRef]
- He, Q.; Geng, F.; Li, C.; Mu, H.; Zhou, G.; Liu, X.; Gao, W.; Wang, Y.; Cheng, T. Long-term variation of satellite-based PM2.5 and influence factors over East China. Sci. Rep. 2018, 8, 11764. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, W.; Geng, X.; Sun, J. Dominant modes of interannual variability of winter fog days over eastern China and their association with major SST variability. Clim. Dyn. 2022, 58, 413–426. [Google Scholar] [CrossRef]
- Quan, J.; Liu, Y.; Jia, X.; Liu, L.; Dou, Y.; Xin, J.; Seinfeld, J.H. Anthropogenic aerosols prolong fog lifetime in China. Environ. Res. Lett. 2021, 16, 044048. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, J.; Xie, X.; He, Q.; Cheng, T.; Mu, H.; Gao, W.; Li, X. Climatic Factors and Their Availability in Estimating Long-Term Variations of Fine Particle Distributions Over East China. J. Geophys. Res. Atmos. 2019, 124, 3319–3334. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, B.; Huang, Y.; Zhu, J.; Kang, H.; Lu, C.; Zhu, T. To what extents do urbanization and air pollution affect fog? Atmos. Chem. Phys. 2020, 20, 5559–5572. [Google Scholar] [CrossRef]
- Yao, W.; Zheng, Z.; Zhao, J.; Wang, X.; Wang, Y.; Li, X.; Fu, J. The factor analysis of fog and haze under the coupling of multiple factors—Taking four Chinese cities as an example. Energy Policy 2020, 137, 111138. [Google Scholar] [CrossRef]
- Dang, R.; Liao, H. Severe winter haze days in the Beijing-Tianjin-Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology. Atmos. Chem. Phys. 2019, 19, 10801–10816. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, R.; Wang, Y. Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with East Asian winter monsoon. Int. J. Climatol. 2016, 36, 346–354. [Google Scholar] [CrossRef]
- Sun, J.; Gong, J.; Zhou, J.; Liu, J.; Liang, J. Analysis of PM2.5 pollution episodes in Beijing from 2014 to 2017: Classification, interannual variations and associations with meteorological features. Atmos. Environ. 2019, 213, 384–394. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, T.; Tie, X.; Li, G.; Cao, J. Air Pollution Zone Migrates South Driven by East Asian Winter Monsoon and Climate Change. Geophys. Res. Lett. 2021, 48, e2021GL092672. [Google Scholar] [CrossRef]
- Duan, J.; Lyu, R.; Wang, Y.; Xie, X.; Wu, Y.; Tao, J.; Cheng, T.; Liu, Y.; Peng, Y.; Zhang, R.; et al. Particle Liquid Water Content and Aerosol Acidity Acting as Indicators of Aerosol Activation Changes in Cloud Condensation Nuclei (CCN) during Pollution Eruption in Guangzhou of South China. Aerosol Air Qual. Res. 2019, 19, 2662–2670. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change—Global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar]
- Wong, J.P.S.; Lee, A.K.Y.; Abbatt, J.P.D. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation. Environ. Sci. Technol. 2015, 49, 13215–13221. [Google Scholar] [CrossRef] [PubMed]
- Leng, C.; Duan, J.; Xu, C.; Zhang, H.; Wang, Y.; Wang, Y.; Li, X.; Kong, L.; Tao, J.; Zhang, R.; et al. Insights into a historic severe haze event in Shanghai: Synoptic situation, boundary layer and pollutants. Atmos. Chem. Phys. 2016, 16, 9221–9234. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Chang, L.; Yan, F.; He, J. Role of climate anomalies on decadal variation in the occurrence of wintertime haze in the Yangtze River Delta, China. Sci. Total Environ. 2017, 599, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wu, B.; Huang, H.; Zhang, H.; Zhang, W.; Wang, Z. Impact of water vapor transfer on a Circum-Bohai-Sea heavy fog: Observation and numerical simulation. Atmos. Res. 2019, 229, 1–22. [Google Scholar] [CrossRef]
- Bhattu, D.; Tripathi, S.N. CCN closure study: Effects of aerosol chemical composition and mixing state. J. Geophys. Res. Atmos. 2015, 120, 766–783. [Google Scholar] [CrossRef]
- Chen, B.; Song, Z.; Huang, J.; Zhang, P.; Hu, X.; Zhang, X.; Guan, X.; Ge, J.; Zhou, X. Estimation of atmospheric PM10 concentration in China using an interpretable deep learning model and top-of-the-atmosphere reflectance data from China’s new generation geostationary meteorological satellite, FY-4A. J. Geophys. Res. Atmos. 2022, 127, e2021JD036393. [Google Scholar] [CrossRef]
- Kumar, P.; Nenes, A.; Sokolik, I.N. Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef] [Green Version]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.C.; et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 2017, 546, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Lance, S.; Nenes, A.; Rissman, T.A. Chemical and dynamical effects on cloud droplet number: Implications for estimates of the aerosol indirect effect. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Li, Z.; Sun, L.; Wang, Z.; Li, P.; Sun, Y.; Ren, J.; Wang, Y.; Cribb, M.; et al. Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China. Atmos. Res. 2017, 188, 80–89. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Peng, J.; Ren, J.; Collins, D.; Zhang, R.; Sun, Y.; Yang, X.; Li, Z. Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols. J. Geophys. Res. Atmos. 2017, 122, 11723–11736. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, F.; Wang, Y.; Collins, D.; Fan, X.; Jin, X.; Xu, W.; Sun, Y.; Cribb, M.; Li, Z. Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing. Atmos. Chem. Phys. 2018, 18, 6907–6921. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.P.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 2006, 312, 1375–1378. [Google Scholar] [CrossRef] [Green Version]
- Kuwata, M.; Kondo, Y. Dependence of size-resolved CCN spectra on the mixing state of nonvolatile cores observed in Tokyo. J. Geophys. Res.-Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Ding, Y.; Liu, Y. Atmospheric circulation and dynamic mechanism for persistent haze events in the Beijing-Tianjin-Hebei region. Adv. Atmos. Sci. 2017, 34, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Zhang, X.; Xu, X.; Zhao, X. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 2011, 101, 711–718. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Wang, H.; Ding, H.; Li, Y.; Gao, Z.; Yang, Y. Re-evaluating the variation in trend of haze days in the urban areas of Beijing during a recent 36-year period. Atmos. Sci. Lett. 2019, 20, e8781. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1). 2016; p. 73. Available online: http://gmao.gsfc.nasa.gov/pubs/office_notes (accessed on 11 March 2021).
- Lance, S.; Medina, J.; Smith, J.N.; Nenes, A. Mapping the operation of the DMT Continuous Flow CCN counter. Aerosol Sci. Technol. 2006, 40, 242–254. [Google Scholar] [CrossRef]
- Roberts, G.C.; Nenes, A. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol. Sci. Technol. 2005, 39, 206–221. [Google Scholar] [CrossRef]
- Birch, G.C.; Woo, B.L.; Sanchez, A.L.; Knapp, H. Image quality, meteorological optical range, and fog particulate number evaluation using the Sandia National Laboratories fog chamber. Opt. Eng. 2017, 56, 0851048. [Google Scholar]
- WMO (World Meteorological Organization). Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8), 7th ed.; World Meteorological Organisation: Geneva, Switzerland, 2008. [Google Scholar]
- Kim, K.W. The comparison of visibility measurement between image-based visual range, human eye-based visual range, and meteorological optical range. Atmos. Environ. 2018, 190, 74–86. [Google Scholar] [CrossRef]
- Tai, H.; Zhuang, Z.; Sun, D. Development and accuracy of a multipoint method for measuring visibility. Appl. Opt. 2017, 56, 7952–7959. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Ma, S. Atmospheric Exploration; China Meteorological Press: Beijing, China, 2011; pp. 41–42. (In Chinese) [Google Scholar]
- Wu, D.; Liao, B.; Chen, H.; Wu, S. Advances in studies of haze weather over Pearl River Delta. Clim. Environ. Res. 2014, 19, 248–264. (In Chinese) [Google Scholar]
- Wu, D.; Tang, S.; Deng, X.; Tan, H.; Li, F.; Bi, X.; Deng, T.; Wang, Y. Meteorological Standard of the People’s Republic of China, QX/T 113-2010, Observation and Forecast Levels of Haze; China Meteorological Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Zhou, Y.; Bai, Y.; Yue, Y.; Lu, J.; Cheri, S.; Xiao, H. Characteristics of the factors influencing transportation and accumulation processes during a persistent pollution event in the middle reaches of the Yangtze River, China. Atmos. Pollut. Res. 2019, 10, 1420–1434. [Google Scholar] [CrossRef]
- Klein, S.A.; Hartmann, D.L. The seasonal cycle of low stratiform clouds. J. Clim. 1993, 6, 1587–1606. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, Y.; Cohen, J.B.; Li, J.; Chen, D.; Xu, H.; Liu, L.; Yin, J.; Hu, K.; Zhai, P. Shift in the Temporal Trend of Boundary Layer Height in China Using Long-Term (1979–2016) Radiosonde Data. Geophys. Res. Lett. 2019, 46, 6080–6089. [Google Scholar] [CrossRef] [Green Version]
- Sheng, P.; Mao, J.; Li, J.; Zhang, A.; Shang, J.; Pan, N. Atmospheric Physics; Peking University Press: Beijing, China, 2013; pp. 19–24. (In Chinese) [Google Scholar]
- Rose, D.; Gunthe, S.S.; Mikhailov, E.; Frank, G.P.; Dusek, U.; Reae, M.O.; Poeschl, U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 2008, 8, 1153–1179. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Reae, M.O.; Poeschl, U. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China—Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys. 2010, 10, 3365–3383. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Wang, Y.; Xie, X.; Li, M.; Tao, J.; Wu, Y.; Cheng, T.; Zhang, R.; Liu, Y.; Li, X.; et al. Influence of pollutants on activity of aerosol cloud condensation nuclei (CCN) during pollution and post-rain periods in Guangzhou, southern China. Sci. Total Environ. 2018, 642, 1008–1019. [Google Scholar] [CrossRef]
- Herckes, P.; Valsaraj, K.T.; Collett, J.L., Jr. A review of observations of organic matter in fogs and clouds: Origin, processing and fate. Atmos. Res. 2013, 132, 434–449. [Google Scholar] [CrossRef]
- Niu, S.; Lu, C.; Liu, Y.; Zhao, L.; Lue, J.; Yang, J. Analysis of the Microphysical Structure of Heavy Fog Using a Droplet Spectrometer: A Case Study. Adv. Atmos. Sci. 2010, 27, 1259–1275. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Xie, M.; Li, S.; Zhuang, B.; Huang, X.; Chen, P.; Zhao, M.; Liu, J. Formation and Evolution Mechanisms for Two Extreme Haze Episodes in the Yangtze River Delta Region of China during Winter 2016. J. Geophys. Res. Atmos. 2019, 124, 3607–3623. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified transboundary transport of haze by aerosol–boundary layer interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Z.; Ding, A. Impact of Aerosol-PBL Interaction on Haze Pollution: Multiyear Observational Evidences in North China. Geophys. Res. Lett. 2018, 45, 8596–8603. [Google Scholar] [CrossRef] [Green Version]
- Motos, G.; Schmale, J.; Corbin, J.C.; Modini, R.L.; Karlen, N.; Berto, M.; Baltensperger, U.; Gysel-Beer, M. Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580 m a.s.l.). Atmos. Chem. Phys. 2019, 19, 3833–3855. [Google Scholar] [CrossRef] [Green Version]
- Che, H.C.; Zhang, X.Y.; Wang, Y.Q.; Zhang, L.; Shen, X.J.; Zhang, Y.M.; Ma, Q.L.; Sun, J.Y.; Zhang, Y.W.; Wang, T.T. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions. Sci. Rep. 2016, 6, 24497. [Google Scholar] [CrossRef]
- Köhler, H. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 1936, 32, 1152–1161. [Google Scholar] [CrossRef]
- Mazoyer, M.; Burnet, F.; Denjean, C.; Roberts, G.C.; Haeffelin, M.; Dupont, J.; Elias, T. Experimental study of the aerosol impact on fog microphysics. Atmos. Chem. Phys. 2019, 19, 4323–4344. [Google Scholar] [CrossRef] [Green Version]
- Massling, A.; Stock, M.; Wehner, B.; Wu, Z.J.; Hu, M.; Brueggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A. Size segregated water uptake of the urban submicrometer aerosol in Beijing. Atmos. Environ. 2009, 43, 1578–1589. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, Q.; Sun, Y.; Ruehl, C.R.; Setyan, A. Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environ. Chem. 2012, 9, 221–235. [Google Scholar] [CrossRef]
- Maronga, B.; Bosveld, F.C. Key parameters for the life cycle of nocturnal radiation fog: A comprehensive large-eddy simulation study. Q. J. R. Meteorol. Soc. 2017, 143, 2463–2480. [Google Scholar] [CrossRef]
- Maalick, Z.; Kuhn, T.; Korhonen, H.; Kokkola, H.; Laaksonen, A.; Romakkaniemi, S. Effect of aerosol concentration and absorbing aerosol on the radiation fog life cycle. Atmos. Environ. 2016, 133, 26–33. [Google Scholar] [CrossRef]
- Twomey, S. Pollution and planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Jia, H.; Ma, X.; Liu, Y. Exploring aerosol-cloud interaction using VOCALS-REx aircraft measurements. Atmos. Chem. Phys. 2019, 19, 7955–7971. [Google Scholar]
- Zheng, X.; Albrecht, B.; Minnis, P.; Ayers, K.; Jonson, H.H. Observed aerosol and liquid water path relationships in marine stratocumulus. Geophys. Res. Lett. 2010, 37, L17803. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; de Leeuw, G.; Kerminen, V.; Zhang, J.; Zhou, P.; Nie, W.; Qi, X.; Hong, J.; Wang, Y.; Ding, A.; et al. Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmos. Chem. Phys. 2017, 17, 5623–5641. [Google Scholar] [CrossRef]
- Tang, J.; Wang, P.; Mickley, L.J.; Xia, X.; Liao, H.; Yue, X.; Sun, L.; Xia, J. Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmos. Environ. 2014, 84, 244–253. [Google Scholar] [CrossRef]
Event | Relative Humidity | Corrected Visibility | Frequency |
---|---|---|---|
Mist | ≥95% | >1 km and ≤10 km | 14.22% |
Fog | ≥95% | ≤1 km | 4.89% |
Fog–haze | ≥80% and <95% | ≤10 km | 13.22% |
Haze | <80% | ≤10 km | 5.75% |
Total | Clean | Mist | Fog | Fog–Haze | Haze | |
---|---|---|---|---|---|---|
VIS (km) | 15.09 ± 11.20 | 22.60 ± 8.78 | 3.88 ± 2.53 | 0.41 ± 0.28 | 6.14 ± 2.26 | 7.03 ± 2.14 |
RH (%) | 76.74 ± 19.16 | 67.13 ± 17.78 | 96.60 ± 0.95 | 97.37 ± 0.79 | 88.80 ± 4.35 | 63.24 ± 12.87 |
Q (g/kg) | 6.31 ± 2.23 | 6.26 ± 2.23 | 6.09 ± 2.16 | 6.66 ± 2.77 | 6.33 ± 2.33 | 5.75 ± 2.25 |
WS (m/s) | 2.16 ± 1.40 | 2.53 ± 1.25 | 0.86 ± 0.55 | 0.60 ± 0.45 | 1.77 ± 1.43 | 2.58 ± 1.18 |
TEM (°C) | 11.25 ± 5.81 | 13.14 ± 5.43 | 6.82 ± 4.87 | 7.58 ± 6.29 | 8.55 ± 5.01 | 12.42 ± 5.38 |
T-Td (°C) | 4.18 ± 4.15 | 6.08 ± 4.18 | 0.34 ± 0.40 | 0.17 ± 0.37 | 1.66 ± 0.84 | 6.61 ± 2.94 |
T-T12 (°C) | −0.11 ± 7.05 | 2.54 ± 6.70 | −7.18 ± 4.29 | −6.98 ± 4.05 | −3.13 ± 4.54 | 5.08 ± 4.41 |
LTS (K) | 8.26 ± 2.98 | 7.63 ± 3.09 | 10.08 ± 2.15 | 10.77 ± 1.34 | 9.05 ± 2.70 | 6.24 ± 2.50 |
NCN (cm−3) | 10,693.89 ± 5040.45 | 8149.76 ± 3384.94 | 12,425.72 ± 4558.25 | 11,126.61 ± 4283.45 | 15,259.92 ± 5999.67 | 12,531.21 ± 4598.33 |
NCCN0.1 (cm−3) | 1282.21 ± 1035.00 | 910.52 ± 888.90 | 1419.81 ± 914.10 | 1352.83 ± 1043.03 | 1743.94 ± 987.62 | 2122.98 ± 1218.47 |
NCCN0.2 (cm−3) | 6320.10 ± 3524.22 | 4550.97 ± 2522.37 | 7323.24 ± 2875.43 | 6581.53 ± 3776.09 | 9219.85 ± 3991.85 | 7817.80 ± 3388.98 |
NCCN0.4 (cm−3) | 8182.53 ± 4295.94 | 6024.05 ± 3032.78 | 9619.13 ± 3656.28 | 8784.11 ± 3874.93 | 12,444.96 ± 5010.90 | 9955.04 ± 3779.64 |
NCCN0.6 (cm−3) | 8886.53 ± 4491.39 | 6645.27 ± 3054.92 | 10,464.37 ± 3843.57 | 9375.86 ± 3848.87 | 13,412.57 ± 5413.48 | 10,450.91 ± 4142.75 |
NCCN0.8 (cm−3) | 9574.63 ± 4666.29 | 6832.19 ± 3281.54 | 11,456.41 ± 3518.29 | 10,374.32 ± 3696.18 | 13,751.17 ± 5582.00 | 10,818.45 ± 4405.55 |
AR0.1 | 0.05 ± 0.07 | 0.05 ± 0.07 | 0.04 ± 0.06 | 0.06 ± 0.08 | 0.06 ± 0.07 | 0.08 ± 0.09 |
AR0.2 | 0.44 ± 0.26 | 0.42 ± 0.27 | 0.42 ± 0.24 | 0.44 ± 0.28 | 0.48 ± 0.24 | 0.60 ± 0.19 |
AR0.4 | 0.36 ± 0.39 | 0.36 ± 0.39 | 0.37 ± 0.38 | 0.36 ± 0.40 | 0.35 ± 0.39 | 0.38 ± 0.42 |
AR0.6 | 0.39 ± 0.42 | 0.39 ± 0.42 | 0.40 ± 0.41 | 0.39 ± 0.43 | 0.37 ± 0.42 | 0.40 ± 0.43 |
AR0.8 | 0.68 ± 0.35 | 0.65 ± 0.37 | 0.66 ± 0.35 | 0.74 ± 0.32 | 0.74 ± 0.32 | 0.81 ± 0.22 |
κ0.2 | 0.20 ± 0.13 | 0.23 ± 0.14 | 0.16 ± 0.09 | 0.15 ± 0.10 | 0.22 ± 0.14 | 0.23 ± 0.10 |
σ0.2/Dp | 0.23 ± 0.09 | 0.22 ± 0.09 | 0.22 ± 0.08 | 0.21 ± 0.07 | 0.25 ± 0.10 | 0.25 ± 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, R.; Gao, W.; Peng, Y.; Qian, Y.; He, Q.; Cheng, T.; Yu, X.; Zhao, G. Fog–Haze Transition and Drivers in the Coastal Region of the Yangtze River Delta. Int. J. Environ. Res. Public Health 2022, 19, 9608. https://doi.org/10.3390/ijerph19159608
Lyu R, Gao W, Peng Y, Qian Y, He Q, Cheng T, Yu X, Zhao G. Fog–Haze Transition and Drivers in the Coastal Region of the Yangtze River Delta. International Journal of Environmental Research and Public Health. 2022; 19(15):9608. https://doi.org/10.3390/ijerph19159608
Chicago/Turabian StyleLyu, Rui, Wei Gao, Yarong Peng, Yijie Qian, Qianshan He, Tiantao Cheng, Xingna Yu, and Gang Zhao. 2022. "Fog–Haze Transition and Drivers in the Coastal Region of the Yangtze River Delta" International Journal of Environmental Research and Public Health 19, no. 15: 9608. https://doi.org/10.3390/ijerph19159608
APA StyleLyu, R., Gao, W., Peng, Y., Qian, Y., He, Q., Cheng, T., Yu, X., & Zhao, G. (2022). Fog–Haze Transition and Drivers in the Coastal Region of the Yangtze River Delta. International Journal of Environmental Research and Public Health, 19(15), 9608. https://doi.org/10.3390/ijerph19159608