Family Dysfunction and Cyberchondria among Chinese Adolescents: A Moderated Mediation Model
Abstract
:1. Introduction
1.1. Family Dysfunction and Cyberchondria
1.2. Mediating Role of Health Anxiety
1.3. Moderating Role of Optimism
1.4. Research Objective and Hypotheses
2. Method
2.1. Participants
2.2. Procedure
2.3. Measures
2.4. Data Analyses
3. Results
3.1. Common Method Bias
3.2. Preliminary Analyses
3.3. Testing for Mediation (Hypothesis 2)
3.4. Testing for Moderated Mediation (Hypotheses 3)
4. Discussion
4.1. Family Dysfunction and Adolescent Cyberchondria
4.2. Mediating Role of Health Anxiety
4.3. The Moderating Roles of Optimism
4.4. Limitations and Future Opportunities
4.5. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- McMullan, R.D.; Berle, D.; Arnáez, S.; Starcevic, V. The relationships between health anxiety, online health information seeking, and cyberchondria: Systematic review and meta-analysis. J. Affect. Disord. 2019, 245, 270–278. [Google Scholar] [CrossRef] [PubMed]
- McDaid, D.; Park, A. Online Health: Untangling the Web. 2011. Available online: https://www.bupa.com/healthpulse (accessed on 3 July 2022).
- Starcevic, V.; Berle, D. Cyberchondria: Towards a better understanding of excessive health-related Internet use. Expert Rev. Neurother. 2013, 13, 205–213. [Google Scholar] [CrossRef] [PubMed]
- White, R.W.; Horvitz, E. Cyberchondria. ACM Trans. Inf. Syst. 2009, 27, 1–37. [Google Scholar] [CrossRef]
- Tyrer, P.; Cooper, S.; Tyrer, H.; Wang, D.; Bassett, P. Increase in the prevalence of health anxiety in medical clinics: Possible cyberchondria. Int. J. Soc. Psychiatry 2019, 65, 566–569. [Google Scholar] [CrossRef]
- Newby, J.M.; McElroy, E. The impact of internet-delivered cognitive behavioural therapy for health anxiety on cyberchondria. J. Anxiety Disord. 2020, 69, 102150. [Google Scholar] [CrossRef]
- Starcevic, V. Cyberchondria: Challenges of problematic online searches for health-related information. Psychother. Psychosom. 2017, 86, 129–133. [Google Scholar] [CrossRef]
- McElroy, E.; Shevlin, M. The development and initial validation of the cyberchondria severity scale (CSS). J. Anxiety Disord. 2014, 28, 259–265. [Google Scholar] [CrossRef]
- Ciułkowicz, M.; Misiak, B.; Szcześniak, D.; Grzebieluch, J.; Maciaszek, J.; Rymaszewska, J. The Portrait of Cyberchondria—A Cross-Sectional Online Study on Factors Related to Health Anxiety and Cyberchondria in Polish Population during SARS-CoV-2 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 4347. [Google Scholar] [CrossRef]
- Rashid, Z.; Rathore, M.A.; Khushk, I.A.; Mashhadi, S.F.; Ahmed, M.; Shahzeb, M. Intolerance of Uncertainty and Anxiety Sensitivity as Prospective Risk Factors for Cyberchondria in Undergraduate Students. Ann. King Edw. Med. Univ. 2022, 28, 91–96. [Google Scholar]
- Brown, R.J.; Skelly, N.; Chew-Graham, C.A. Online health research and health anxiety: A systematic review and conceptual integration. Clin. Psychol. Sci. Pract. 2020, 27, e12299. [Google Scholar] [CrossRef]
- Fergus, T.A.; Russell, L.H. Does cyberchondria overlap with health anxiety and obsessive–compulsive symptoms? An examination of latent structure and scale interrelations. J. Anxiety Disord. 2016, 38, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Fergus, T.A.; Spada, M.M. Cyberchondria: Examining relations with problematic Internet use and metacognitive beliefs. Clin. Psychol. Psychother. 2017, 24, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Nestoriuc, Y.; Nolido, N.V.; Barsky, A.J. The prevalence of personality disorders in hypochondriasis. J. Clin. Psychiatry 2010, 71, 15476. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, C.; Mathews, A. Cognitive bias modification approaches to anxiety. Annu. Rev. Clin. Psychol. 2012, 8, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Bajcar, B.; Babiak, J. Self-esteem and cyberchondria: The mediation effects of health anxiety and obsessive–compulsive symptoms in a community sample. Curr. Psychol. 2021, 40, 2820–2831. [Google Scholar] [CrossRef] [Green Version]
- Valentine, C.W. Parents and Children: A First Book on the Psychology of Child Development and Training; Routledge: London, UK, 2015. [Google Scholar]
- Murphy, Y.E.; Flessner, C.A.; Altenburger, E.M.; Pauls, D.L.; Keuthen, N.J. The impact of family functioning on pulling styles among adolescents with trichotillomania (hair pulling disorder). J. Obs.-Compuls. Relat. Disord. 2017, 14, 27–35. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, L.; Guo, L.; Huebner, E.S. Family dysfunction and Adolescents’ anxiety and depression: A multiple mediation model. J. Appl. Dev. Psychol. 2020, 66, 101090. [Google Scholar] [CrossRef]
- Tafa, M.; Baiocco, R. Addictive behavior and family functioning during adolescence. Am. J. Fam. Ther. 2009, 37, 388–395. [Google Scholar] [CrossRef]
- Schulte, I.E.; Petermann, F. Somatoform disorders: 30 years of debate about criteria! What about children and adolescents? J. Psychosom. Res. 2011, 70, 218–228. [Google Scholar] [CrossRef]
- Cerutti, R.; Spensieri, V.; Presaghi, F.; Renzi, A.; Palumbo, N.; Simone, A.; Solano, L.; Di Trani, M. Alexithymic Traits and Somatic Symptoms in Children and Adolescents: A Screening Approach to Explore the Mediation Role of Depression. Psychiatr. Q. 2020, 91, 521–532. [Google Scholar] [CrossRef]
- Lamela, D.; Jongenelen, I.; Morais, A.; Figueiredo, B. Cognitive-affective depression and somatic symptoms clusters are differentially associated with maternal parenting and coparenting. J. Affect. Disord. 2017, 219, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktar, E.; Nikolic, M.; Bogels, S.M. Environmental transmission of generalized anxiety disorder from parents to children: Worries, experiential avoidance, and intolerance of uncertainty. Dialogues Clin. Neurosci. 2017, 19, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Muris, P.; Merckelbach, H.; Mayer, B.; Prins, E. How serious are common childhood fears? Behav. Res. Ther. 2000, 38, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Alpaslan, A.H. Cyberchondria and adolescents. Int. J. Soc. Psychiatry 2016, 62, 679–680. [Google Scholar] [CrossRef] [PubMed]
- Epstein, N.B.; Bishop, D.S.; Levin, S. The McMaster model of family functioning. J. Marital. Fam. Ther. 1978, 4, 19–31. [Google Scholar] [CrossRef]
- Abramowitz, J.S.; Deacon, B.J.; Valentiner, D.P. The Short Health Anxiety Inventory: Psychometric Properties and Construct Validity in a Non-clinical Sample. Cogn. Ther. Res. 2007, 31, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.S. Functional Family Therapy with a Systemic Approach; Alzahra University Press: Tehran, Iran, 2004. [Google Scholar]
- Pagani, L.S.; Japel, C.; Vaillancourt, T.; Côté, S.; Tremblay, R.E. Links between life course trajectories of family dysfunction and anxiety during middle childhood. J. Abnorm. Child Psychol. 2008, 36, 41–53. [Google Scholar] [CrossRef]
- Ivanova, E.; Karabeliova, S. Elaborating on Internet addiction and cyberchondria–relationships, direct and mediated effects. J. Educ. Cult. Soc. 2014, 5, 127–144. [Google Scholar] [CrossRef]
- Davila, J.; Ramsay, M.; Stroud, C.B.; Steinberg, S.J. Attachment as Vulnerability to the Development of Psychopathology; American Psychological Association: Washington, DC, USA, 2005. [Google Scholar]
- Vesterling, C.; Koglin, U. The relationship between attachment and somatoform symptoms in children and adolescents: A systematic review and meta-analysis. J. Psychosom. Res. 2020, 130, 109932. [Google Scholar] [CrossRef]
- Sirri, L.; Tossani, E.; Potena, L.; Masetti, M.; Grandi, S. Manifestations of health anxiety in patients with heart transplant. Heart Lung 2020, 49, 364–369. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Newby, J.M.; Hobbs, M.J.; Mahoney, A.; Wong, S.K.; Andrews, G. DSM-5 illness anxiety disorder and somatic symptom disorder: Comorbidity, correlates, and overlap with DSM-IV hypochondriasis. J. Psychosom. Res. 2017, 101, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Mathes, B.M.; Norr, A.M.; Allan, N.P.; Albanese, B.J.; Schmidt, N.B. Cyberchondria: Overlap with health anxiety and unique relations with impairment, quality of life, and service utilization. Psychiatry Res. 2018, 261, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Starcevic, V.; Baggio, S.; Berle, D.; Khazaal, Y.; Viswasam, K. Cyberchondria and its relationships with related constructs: A network analysis. Psychiatr. Q. 2019, 90, 491–505. [Google Scholar] [CrossRef]
- Kobori, O.; Salkovskis, P.M. Patterns of reassurance seeking and reassurance-related behaviours in OCD and anxiety disorders. Behav. Cogn. Psychother. 2013, 41, 1–23. [Google Scholar] [CrossRef]
- Wright, K.D.; Lebell, M.A.; Carleton, R.N. Intolerance of uncertainty, anxiety sensitivity, health anxiety, and anxiety disorder symptoms in youth. J. Anxiety Disord. 2016, 41, 35–42. [Google Scholar] [CrossRef]
- Schmidt, N.B.; Joiner, T.E.; Staab, J.P.; Williams, F.M. Health perceptions and anxiety sensitivity in patients with panic disorder. J. Psychopathol. Behav. Assess. 2003, 25, 139–145. [Google Scholar] [CrossRef]
- Association, A.P. Quick Reference to the Diagnostic Criteria from DSM-IV-TR; APA: Washington, DC, USA, 2000. [Google Scholar]
- Marcus, D.K.; Gurley, J.R.; Marchi, M.M.; Bauer, C. Cognitive and perceptual variables in hypochondriasis and health anxiety: A systematic review. Clin. Psychol. Rev. 2007, 27, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Carver, C.S.; Scheier, M.F.; Segerstrom, S.C. Optimism. Clin. Psychol. Rev. 2010, 30, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Seligman, M.E.; Abramson, L.Y.; Semmel, A.; Von Baeyer, C. Depressive attributional style. J. Abnorm. Psychol. 1979, 88, 242. [Google Scholar] [CrossRef]
- Barnett, M.D.; Martinez, B. Optimists: It could have been worse; Pessimists: It could have been better: Dispositional optimism and pessimism and counterfactual thinking. Personal. Individ. Differ. 2015, 86, 122–125. [Google Scholar] [CrossRef]
- Usan, S.P.; Salavera, B.C.; Murillo, L.V. Exploring the Psychological Effects of Optimism on Life Satisfaction in Students: The Mediating Role of Goal Orientations. Int. J. Environ. Res. Public Health 2020, 17, 7887. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.K.; Walker, K.L.; Chang, E.C.; Lyness, J.M. Illness burden and symptoms of anxiety in older adults: Optimism and pessimism as moderators. Int. Psychogeriatr. 2012, 24, 1614–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, J.K.; Wolford, K.; Lalonde, S.M.; Brunk, L.; Morris, A.P. Dispositional optimism as a moderator of the relationship between negative life events and suicide ideation and attempts. Cogn. Ther. Res. 2007, 31, 533–546. [Google Scholar] [CrossRef]
- Starcevic, V.; Aboujaoude, E. Cyberchondria, cyberbullying, cybersuicide, cybersex: “new” psychopathologies for the 21st century? World Psychiatry 2015, 14, 97. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Cottler, L.B. Optimism and opioid misuse among justice-involved children. Addict. Behav. 2020, 103, 106226. [Google Scholar] [CrossRef]
- Avvenuti, G.; Baiardini, I.; Giardini, A. Optimism’s explicative role for chronic diseases. Front. Psychol. 2016, 7, 295. [Google Scholar] [CrossRef] [Green Version]
- Mannix, M.M.; Feldman, J.M.; Moody, K. Optimism and health-related quality of life in adolescents with cancer. Child Care Health Dev. 2009, 35, 482–488. [Google Scholar] [CrossRef]
- Hayes, A. Introduction to Mediation, Moderation, and Conditional Process Analysis: Methodology in the Social Sciences a Regression-Based Approach; The Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Liu, Q.Q.; Zhou, Z.K.; Yang, X.J.; Kong, F.C.; Sun, X.J.; Fan, C.Y. Mindfulness and sleep quality in adolescents: Analysis of rumination as a mediator and self-control as a moderator. Personal. Individ. Differ. 2018, 122, 171–176. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, R. Applicability of the General Functioning Scale of the Family in China. China J. Health Psychol. 2019, 27, 1411–1414. [Google Scholar]
- Liu, Q.Q.; Yang, X.J.; Hu, Y.T.; Zhang, C.Y.; Nie, Y.G. How and when is family dysfunction associated with adolescent mobile phone addiction? Testing a moderated mediation model. Child. Youth Serv. Rev. 2020, 111, 104827. [Google Scholar] [CrossRef]
- McElroy, E.; Kearney, M.; Touhey, J.; Evans, J.; Cooke, Y.; Shevlin, M. The CSS-12: Development and validation of a short-form version of the cyberchondria severity scale. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Ding, J. The Characteristics and Influential Factors Research of Cyberchondria. Master Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Zhang, Y.; Ding, M.; Xu, H. (Eds.) Reliability and Validity of Short Version Health Anxiety Scale (SHAI) and Its Application in Chinese Population; The 11th National Psychiatric Academic Conference of Chinese Medical Association: Beijing, China, 2013. [Google Scholar]
- Yu, L.-H.; Zhang, Y.-Q.; Mao, S.-Q.; Zhao, Y.-Q. Health anxiety and personality of female students with high level alexithymia. Chin. J. Woman Child Health Res. 2016, 2, 198–199. [Google Scholar]
- Chen, G. The Influence of Class Environment of Junior High School Students on Prosocial Behavior: The Role of Optimistic Personality Intermediary. Master Thesis, Hunan University of Science and Technology, Xiangtan, China, 2018. [Google Scholar]
- Bonsaksen, T.; Grimholt, T.K.; Skogstad, L.; Lerdal, A.; Ekeberg, O.; Heir, T.; Schou-Bredal, I. Self-diagnosed depression in the Norwegian general population-associations with neuroticism, extraversion, optimism, and general self-efficacy. BMC Public Health 2018, 18, 1076. [Google Scholar] [CrossRef] [PubMed]
- Krok, D. The role of meaning in life within the relations of religious coping and psychological well-being. J. Relig. Health 2015, 54, 2292–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colditz, J.B.; Woods, M.S.; Primack, B.A. Adolescents seeking online health information: Topics, approaches, and challenges. In Technology and Adolescent Mental Health; Springer: Berlin/Hamburg, Germany, 2018; pp. 21–35. [Google Scholar]
- Ren, C. Measurement methodology on social economic status index of students. J. Educ. Stud. 2010, 6, 77–82. [Google Scholar]
- Chiolero, A. Body mass index as socioeconomic indicator. BMJ (Clin. Res. Ed.) 2021, 373, n1158. [Google Scholar] [CrossRef]
- Liu, Y.; West, S.G.; Levy, R.; Aiken, L.S. Tests of Simple Slopes in Multiple Regression Models with an Interaction: Comparison of Four Approaches. Multivar. Behav. Res. 2017, 52, 445–464. [Google Scholar] [CrossRef]
- Hayes, A. PROCESS macro for SPSS and SAS. In Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2018. [Google Scholar]
- Podsakoff, P.M.; Mackenzie, S.B.; Podsakoff, N. Sources of Method Bias in Social Science Research and Recommendations on How to Control it. Soc. Sci. Electron. Publ. 2012, 63, 539. [Google Scholar] [CrossRef] [Green Version]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using Partial Least Squares. J. Inf. Technol. Theory Appl. 2010, 11, 6–39. [Google Scholar]
- Sirri, L.; Garotti, M.G.R.; Grandi, S.; Tossani, E. Adolescents’ hypochondriacal fears and beliefs: Relationship with demographic features, psychological distress, well-being and health-related behaviors. J. Psychosom. Res. 2015, 79, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.S. Mediating effect of adolescents’ smart-phone addiction in the relationship between family function and school adjustment resilience. J. Korea Contents Assoc. 2014, 14, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Kidman, R.; Smith, D.; Piccolo, L.R.; Kohler, H.P. Psychometric evaluation of the adverse childhood experience international questionnaire (ACE-IQ) in Malawian adolescents. Child Abus. Negl. 2019, 92, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Sisco-Taylor, B.L.; Corley, R.P.; Stallings, M.C.; Wadsworth, S.J.; Reynolds, C.A. Temperament, childhood illness burden, and illness behavior in early adulthood. Health Psychol. 2019, 38, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.L.; Critchley, C. Impact of choice of coping strategies and family functioning on psychosocial function of young people with epilepsy. Epilepsy Behav. 2016, 59, 50–56. [Google Scholar] [CrossRef]
- Kleiboer, A.; Donker, T.; Seekles, W.; van Straten, A.; Riper, H.; Cuijpers, P. A randomized controlled trial on the role of support in Internet-based problem solving therapy for depression and anxiety. Behav. Res. Ther. 2015, 72, 63–71. [Google Scholar] [CrossRef]
- McKenna, K.Y.; Bargh, J.A. Plan 9 from cyberspace: The implications of the Internet for personality and social psychology. Personal. Soc. Psychol. Rev. 2000, 4, 57–75. [Google Scholar] [CrossRef]
- Williams, P.G. The psychopathology of self-assessed health: A cognitive approach to health anxiety and hypochondriasis. Cogn. Ther. Res. 2004, 28, 629–644. [Google Scholar] [CrossRef]
- Seda Sahin, Z.; Nalbone, D.P.; Wetchler, J.L.; Bercik, J.M. The relationship of differentiation, family coping skills, and family functioning with optimism in college-age students. Contemp. Fam. Ther. 2010, 32, 238–256. [Google Scholar] [CrossRef]
- Sagliano, L.; Nappo, R.; Liotti, M.; Fiorenza, M.; Gargiulo, C.; Trojano, L.; Conson, M. “Health Comes First”: Action Tendencies to Health-Related Stimuli in People with Health-Anxiety as Revealed by an Emotional Go/No-Go Task. Int. J. Environ. Res. Public Health 2021, 18, 9104. [Google Scholar] [CrossRef]
- Whitcomb, S. Behavioral, Social, and Emotional Assessment of Children and Adolescents; Routledge: London, UK, 2013. [Google Scholar]
- Tucker, M.C.; Rodriguez, C.M. Family Dysfunction and Social Isolation as Moderators between Stress and Child Physical Abuse Risk. J. Fam. Violence 2014, 29, 175–186. [Google Scholar] [CrossRef]
- Atienza, A.A.; Stephens, M.A.P.; Townsend, A.L. Role stressors as predictors of changes in womens’ optimistic expectations. Personal. Individ. Differ. 2004, 37, 471–484. [Google Scholar] [CrossRef]
- Segerstrom, S.C. Optimism and resources: Effects on each other and on health over 10 years. J. Res. Personal. 2007, 41, 772–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meevissen, Y.M.; Peters, M.L.; Alberts, H.J. Become more optimistic by imagining a best possible self: Effects of a two week intervention. J. Behav. Ther. Exp. Psychiatry 2011, 42, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Smeets, E.; Neff, K.; Alberts, H.; Peters, M. Meeting suffering with kindness: Effects of a brief self-compassion intervention for female college students. J. Clin. Psychol. 2014, 70, 794–807. [Google Scholar] [CrossRef]
Total | Gender | Only Kid | Residence | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | Female | Male | t | Only One | More than One | t | Urban | Rural | t | |
M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | ||||
FD | 1.99 (0.48) | 1.98 (0.49) | 2.01 (0.46) | 1.19 | 1.99 (0.47) | 2.00 (0.50) | 0.52 | 1.97 (0.49) | 2.02 (0.47) | 2.19 * |
HA | 1.86 (0.43) | 1.85 (0.40) | 1.88 (0.46) | 1.97 * | 1.86 (0.42) | 1.86 (0.45) | 0.04 | 1.86 (0.44) | 1.87 (0.42) | 0.54 |
OP | 3.59 (0.58) | 3.61 (0.58) | 3.56 (0.57) | 1.97 * | 3.60 (0.57) | 3.57 (0.59) | 0.85 | 3.58 (0.58) | 3.59 (0.57) | 0.30 |
CC | 2.15 (0.79) | 2.12 (0.72) | 2.18 (0.85) | 1.87 | 2.14 (0.78) | 2.16 (0.80) | 0.53 | 2.16 (0.77) | 2.14(0.80) | 0.70 |
Variables | M (SD) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
1. Grade | - | - | ||||||||
2. Family structure | - | −0.01 | - | |||||||
3. Socioeconomic status | - | 0.16 *** | 0.00 | - | ||||||
4. BMI | 19.91 (3.43) | 0.17 *** | −0.03 | 0.04 | - | |||||
5. OHR | 2.69 (1.21) | 0.00 | −0.02 | 0.01 | 0.00 | - | ||||
6. FD | 1.99 (0.48) | −0.03 | −0.04 * | −0.13 *** | 0.01 | −0.01 | - | |||
7. HA | 1.86 (0.43) | 0.04 | −0.02 | −0.03 | −0.02 | 0.33 *** | 0.24 *** | - | ||
8. OP | 3.59 (0.58) | 0.02 | 0.04 | 0.08 *** | −0.02 | 0.00 | −0.39 *** | −0.23 *** | - | |
9. CC | 2.15 (0.79) | 0.06 ** | −0.05 * | 0.03 | 0.02 | 0.52 *** | 0.15 *** | 0.68 *** | −0.17 *** | - |
Predictors | Model 1 (HA) | Model 2 (CC) | ||||||
---|---|---|---|---|---|---|---|---|
β | SE | t | 95%CI | β | SE | t | 95% CI | |
Grade | 0.11 | 0.04 | 2.55 * | [0.03, 0.20] | 0.07 | 0.03 | 2.13 * | [0.00, 0.13] |
Family structure | −0.02 | 0.07 | −0.30 | [−0.15, 0.11] | −0.10 | 0.05 | −1.97 * | [0.20, 0.00] |
Socioeconomic status | −0.01 | 0.02 | −0.25 | [−0.05, 0.04] | 0.04 | 0.02 | 2.42 * | [0.01, 0.07] |
BMI | −0.04 | 0.02 | −1.76 | [−0.08, 0.00] | 0.02 | 0.02 | 1.34 | [−0.01, 0.05] |
OHR | 0.33 | 0.02 | 16.59 *** | [0.29, 0.37] | 0.33 | 0.02 | 21.23 *** | [0.30, 0.36] |
FD | 0.24 | 0.02 | 11.92 *** | [0.20, 0.28] | 0.03 | 0.02 | 2.04 * | [0.01, 0.06] |
HA | 0.56 | 0.02 | 34.85 *** | [0.53, 0.59] | ||||
R2 | 0.17 | 0.56 | ||||||
F-value | 70.38 *** | 372.48 *** |
Predictors | Model 1 (HA) | Model 2 (CC) | ||||||
---|---|---|---|---|---|---|---|---|
β | SE | t | 95%CI | β | SE | t | 95%CI | |
Grade | 0.12 | 0.04 | 2.71 ** | [0.03, 0.20] | 0.07 | 0.03 | 2.13 * | [0.01, 0.13] |
Family structure | −0.00 | 0.07 | −0.04 | [−0.14, 0.13] | −0.10 | 0.05 | −1.91 | [−0.19, 0.00] |
Socioeconomic status | 0.00 | 0.02 | 0.04 | [−0.04, 0.04] | 0.04 | 0.02 | 2.47 * | [0.01, 0.07] |
BMI | −0.04 | 0.02 | −1.98 * | [−0.08, 0.00] | 0.02 | 0.02 | 1.16 | [−0.01, 0.05] |
OHR | 0.33 | 0.02 | 16.68 *** | [0.29, 0.37] | 0.33 | 0.02 | 21.35 *** | [0.30, 0.36] |
OP | −0.17 | 0.02 | −7.72 *** | [−0.21, −0.12] | −0.04 | 0.02 | −2.50 * | [−0.07, −0.01] |
FD | 0.18 | 0.02 | 8.06 *** | [0.13, 0.22] | 0.02 | 0.02 | 1.05 | [−0.02, 0.05] |
FD × OP | −0.02 | 0.02 | −1.41 | [−0.06, 0.01] | −0.01 | 0.01 | −0.49 | [−0.03, 0.02] |
HA | 0.54 | 0.02 | 31.59 *** | [0.51, 0.57] | ||||
HA × OP | −0.04 | 0.02 | −2.76 ** | [−0.07, −0.01] | ||||
R2 | 0.19 | 0.56 | ||||||
F-value | 61.94 *** | 263.804 *** |
Level of Moderator (Optimistic) | Indirect Effect | |||
---|---|---|---|---|
β | SE | LLCI | ULCI | |
Low (1 standard deviation below mean) | 0.12 | 0.02 | 0.07 | 0.16 |
Mean | 0.09 | 0.01 | 0.07 | 0.12 |
High (1 standard deviation above mean) | 0.08 | 0.01 | 0.05 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yang, H.; Cheng, M.; Miao, T. Family Dysfunction and Cyberchondria among Chinese Adolescents: A Moderated Mediation Model. Int. J. Environ. Res. Public Health 2022, 19, 9716. https://doi.org/10.3390/ijerph19159716
Liu S, Yang H, Cheng M, Miao T. Family Dysfunction and Cyberchondria among Chinese Adolescents: A Moderated Mediation Model. International Journal of Environmental Research and Public Health. 2022; 19(15):9716. https://doi.org/10.3390/ijerph19159716
Chicago/Turabian StyleLiu, Shengyingjie, Huai Yang, Min Cheng, and Tianchang Miao. 2022. "Family Dysfunction and Cyberchondria among Chinese Adolescents: A Moderated Mediation Model" International Journal of Environmental Research and Public Health 19, no. 15: 9716. https://doi.org/10.3390/ijerph19159716
APA StyleLiu, S., Yang, H., Cheng, M., & Miao, T. (2022). Family Dysfunction and Cyberchondria among Chinese Adolescents: A Moderated Mediation Model. International Journal of Environmental Research and Public Health, 19(15), 9716. https://doi.org/10.3390/ijerph19159716