Associations of Brain-Derived Neurotropic Factor rs6265 Gene Polymorphism with Personality Dimensions among Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sellami, M.; Elrayess, M.A.; Puce, L.; Bragazzi, N.L. Molecular Big Data in Sports Sciences: State-of-Art and Future Prospects of OMICS-Based Sports Sciences. Front. Mol. Biosci. 2022, 8, 815410. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Egorova, E.S.; Gabdrakhmanova, L.J.; Fedotovskaya, O.N. Genes and Athletic Performance: An Update. Med. Sport Sci. 2016, 61, 41–54. [Google Scholar]
- Cervone, D.; Pervin, L.A. Personality: Theory and Research; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- McCrae, R.R.; Costa, P.T., Jr. Personality trait structure as a human universal. Am. Psychol. 1997, 52, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Piedmont, R.L.; Hill, D.C.; Blanco, S. Predicting athletic performance using the five-factor model of personality. Pers. Individ. Differ. 1999, 27, 769–777. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, X.; Xiao, L.; Li, Y.; Li, B.; Yan, Z.; Guo, L.; Rost, D.H. The Relationship Between Big Five and Self-Control in Boxers: A Mediating Model. Front. Psychol. 2019, 10, 1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, M.B.; Waris, S.; Afzal, S. Personality traits predict in sports performance among University athletes. Spark 2019, 4, 149–159. [Google Scholar]
- Weisberg, Y.J.; DeYoung, C.G.; Hirsh, J.B. Gender Differences in Personality across the Ten Aspects of the Big Five. Front. Psychol. 2011, 2, 178. [Google Scholar] [CrossRef] [Green Version]
- Andersen, B.P. Ethnic group differences in the general factor of personality (GFP) are opposite to that which would be predicted by differential-K theory. Pers. Individ. Differ. 2020, 152, 109567. [Google Scholar] [CrossRef]
- Singh, K. Comparative study on personality amongst athletes of individual and team sports. Int. J. Dev. Res. 2017, 7, 16194–16197. [Google Scholar]
- Khan, B.; Ahmed, A.; Abid, G. Using the ‘Big-Five’-For Assessing Personality Traits of the Champions: An Insinuation for the Sports Industry. Pak. J. Commer. Soc. Sci. 2016, 10, 175–191. [Google Scholar]
- Silverman, M.N.; Deuster, P.A. Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus 2014, 4, 20140040. [Google Scholar] [CrossRef] [Green Version]
- Kitahara, M.; Inoue, T.; Mani, H.; Takamatsu, Y.; Ikegami, R.; Tohyama, H.; Maejima, H. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci. Lett. 2021, 749, 135749. [Google Scholar] [CrossRef]
- Chou, C.-C.; Chien, L.-Y.; Lin, M.-F.; Wang, C.-J.; Liu, P.-Y. Effects of Aerobic Walking on Memory, Subjective Cognitive Complaints, and Brain-Derived Neurotrophic Factor Among Older Hypertensive Women. Biol. Res. Nurs. 2022, 10998004221098974. [Google Scholar] [CrossRef] [PubMed]
- Simão, A.P.; Mendonça, V.A.; Avelar, N.C.P.; Da Fonseca, S.F.; Santos, J.M.; De Oliveira, A.C.C.; Tossige-Gomes, R.; Ribeiro, V.G.C.; Neves, C.D.C.; Balthazar, C.H.; et al. Whole Body Vibration Training on Muscle Strength and Brain-Derived Neurotrophic Factor Levels in Elderly Woman With Knee Osteoarthritis: A Randomized Clinical Trial Study. Front. Physiol. 2019, 10, 756. [Google Scholar] [CrossRef] [PubMed]
- de Las Heras, B.; Rodrigues, L.; Cristini, J.; Weiss, M.; Prats-Puig, A.; Roig, M. Does the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Modulate the Effects of Physical Activity and Exercise on Cognition? Neuroscientist 2022, 28, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Duderstadt, Y.; Lessmann, V.; Müller, N.G. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J. Clin. Med. 2020, 9, 1136. [Google Scholar] [CrossRef]
- Tsatsoulis, A.; Fountoulakis, S. The Protective Role of Exercise on Stress System Dysregulation and Comorbidities. Ann. N. Y. Acad. Sci. 2006, 1083, 196–213. [Google Scholar] [CrossRef]
- Ryan, S.M.; Nolan, Y.M. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: Can exercise compensate? Neurosci. Biobehav. Rev. 2016, 61, 121–131. [Google Scholar] [CrossRef]
- Packer, N.; Pervaiz, N.; Hoffman-Goetz, L. Does exercise protect from cognitive decline by altering brain cytokine and apoptotic protein levels? A systematic review of the literature. Exerc. Immunol. Rev. 2010, 16, 138–162. [Google Scholar]
- Caldeira, M.V.; Melo, C.V.; Pereira, D.B.; Carvalho, R.F.; Carvalho, A.L.; Duarte, C.B. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol. Cell. Neurosci. 2007, 35, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Neeper, S.A.; Góauctemez-Pinilla, F.; Choi, J.; Cotman, C. Exercise and brain neurotrophins. Nature 1995, 373, 109. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.; Brassard, P.; Adser, H.; Pedersen, M.V.; Leick, L.; Hart, E.; Secher, N.H.; Pedersen, B.K.; Pilegaard, H. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009, 94, 1062–1069. [Google Scholar] [CrossRef]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Liu, C.S.; Sherman, C.; Chan, S.; Lanctôt, K.L. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS ONE 2016, 11, e0163037. [Google Scholar] [CrossRef] [PubMed]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Lanctôt, K.L. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. Eur. J. Neurosci. 2017, 46, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Gomes de Assis, G.; Cięszczyk, P. Exercise—A Unique Endogenous Regulator of Irisin, BDNF, Leptin and Cortisol against Depression. Balt. J. Health Phys. Act. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Asai, T.; Abe, D.; Doi, H.; Tanaka, C.; Ohishi, K.; Maeda, H.; Wada, T.; Takahashi, Y.; Nakahata, Y.; Shinohara, K. Characteristics of the BDNF Val66Met Polymorphism in Competitive Swimmers and Judo Athletes. Acta Med. Nagasaki. 2020, 64, 23–29. [Google Scholar]
- Joffe, R.T.; Gatt, J.M.; Kemp, A.H.; Grieve, S.; Dobson-Stone, C.; Kuan, S.A.; Schofield, P.R.; Gordon, E.; Williams, L.M. Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: Implications for depressive illness. Hum. Brain Mapp. 2009, 30, 1246–1256. [Google Scholar] [CrossRef]
- Willis-Owen, S.A.; Fullerton, J.; Surtees, P.G.; Wainwright, N.W.; Miller, S.; Flint, J. The Val66Met Coding Variant of the Brain-Derived Neurotrophic Factor (BDNF) Gene Does Not Contribute Toward Variation in the Personality Trait Neuroticism. Biol. Psychiatry 2005, 58, 738–742. [Google Scholar] [CrossRef]
- Lang, U.E.; Hellweg, R.; Kalus, P.; Bajbouj, M.; Lenzen, K.P.; Sander, T.; Kunz, D.; Gallinat, J. Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology 2005, 180, 95–99. [Google Scholar] [CrossRef]
- Sen, S.; Nesse, R.; Stoltenberg, S.F.; Li, S.; Gleiberman, L.; Chakravarti, A.; Weder, A.B.; Burmeister, M. A BDNF Coding Variant is Associated with the NEO Personality Inventory Domain Neuroticism, a Risk Factor for Depression. Neuropsychopharmacology 2003, 28, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Kendler, K.S.; Neale, M.C.; Kessler, R.C.; Heath, A.C.; Eaves, L.J. The Clinical Characteristics of Major Depression as Indices of the Familial Risk to Illness. Br. J. Psychiatry 1994, 165, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Anastasia, A.; Deinhardt, K.; Chao, M.; Will, N.E.; Irmady, K.; Lee, F.S.; Hempstead, B.L.; Bracken, C. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat. Commun. 2013, 4, 2490. [Google Scholar] [CrossRef] [Green Version]
- Arumuggam, N.; Bhowmick, N.A.; Rupasinghe, H.P.V. A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer. Phytotherapy Res. 2015, 29, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Ferris, L.T.; Williams, J.S.; Shen, C.-L. The Effect of Acute Exercise on Serum Brain-Derived Neurotrophic Factor Levels and Cognitive Function. Med. Sci. Sports Exerc. 2007, 39, 728–734. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Haslacher, H.; Michlmayr, M.; Batmyagmar, D.; Perkmann, T.; Ponocny-Seliger, E.; Scheichenberger, V.; Pilger, A.; Dal-Bianco, P.; Lehrner, J.; Pezawas, L.; et al. Physical Exercise Counteracts Genetic Susceptibility to Depression. Neuropsychobiology 2015, 71, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Bath, K.G.; Lee, F.S. Variant BDNF (Val66Met) impact on brain structure and function. Cogn. Affect. Behav. Neurosci. 2006, 6, 79–85. [Google Scholar] [CrossRef]
- Zoladz, J.A.; Pilc, A.; Majerczak, J.; Grandys, M.; Zapart-Bukowska, J.; Duda, K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 2008, 59 (Suppl. 7), 119–132. [Google Scholar]
- Pedersen, B.K.; Pedersen, M.; Krabbe, K.S.; Bruunsgaard, H.; Matthews, V.B.; Febbraio, M.A. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 2009, 94, 1153–1160. [Google Scholar] [CrossRef]
- Knaepen, K.; Goekint, M.; Heyman, E.M.; Meeusen, R. Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Med. 2010, 40, 765–801. [Google Scholar] [CrossRef]
- Yarrow, J.F.; White, L.J.; McCoy, S.C.; Borst, S.E. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci. Lett. 2010, 479, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Scribbans, T.D.; Bentley, R.F.; Kellawan, J.M.; Gurd, B.; Tschakovsky, M.E. Neurotrophic growth factor responses to lower body resistance training in older adults. Appl. Physiol. Nutr. Metab. 2016, 41, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Tschakovsky, M.E. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl. Physiol. Nutr. Metab. 2018, 43, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Donati, F.; Sian, V.; Biasini, G.M.; de la Torre, X.; Folchitto, F.; Botrè, F. Serum Levels of Brain-Derived Neurotrophic Factor and Other Neurotrophins in Elite Athletes: Potential Markers of the Use of Transcranial Direct Current Stimulation in Sport. Front. Sports Act. Living 2021, 3, 619573. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Petrigna, L.; Pereira, F.C.; Muscella, A.; Bianco, A.; Tavares, P. The Impact of Physical Exercise on the Circulating Levels of BDNF and NT 4/5: A Review. Int. J. Mol. Sci. 2021, 22, 8814. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.T.; McCrae, R.R. The SAGE Handbook of Personality Theory and Assessment: Volume 2—Personality Measurement and Testing; SAGE Publishing: London, UK, 2008; pp. 179–198. [Google Scholar]
- Yperen, N.W.V. Why some make it and others do not: Identifying psychological factors that predict career success in professional adult soccer. Sport Psychol. 2009, 23, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Linnér, R.K.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R.; et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef] [PubMed]
- De Moor, M.H.M.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; de Geus, E. Genome-Wide Linkage Scan for Athlete Status in 700 British Female DZ Twin Pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Niewczas, M.; Król, P.; Czarny, W.; Bajorek, W.; Rzepko, M.; Drozd, S.; Płonka, A.; Drozd, M.; Czaja, R.; Błach, W.; et al. Association Analysis of Polymorphic Variants of the BDNF Gene in Athletes. Genes 2021, 12, 1340. [Google Scholar] [CrossRef]
Martial Arts | Controls | χ2 (p-Value) | |
---|---|---|---|
BDNF rs6265 | |||
n = 106 | n = 152 | 1.009 (0.6039) | |
G/G | 76 (71.7%) | 100 (65.8%) | |
A/G | 27 (25.5%) | 47 (30.9%) | |
A/A | 3 (2.8%) | 5 (3.3%) | |
G | 179 (84.4%) | 247 (81.2%) | 0.880 (0.3484) |
A | 33 (15.6%) | 57 (18.8%) | |
Hardy-Weinberg equilibrium | |||
χ2 (p-value) | 0.102 (0.7498) | 0.033 (0.8548) |
NEO Five-Factor Inventory/ | Martial Arts (n = 106) M ± SD | Control (n = 152) M ± SD | U Mann–Whitney Z | p-Value |
---|---|---|---|---|
Neuroticism/scale | 4.75 ± 2.24 | 4.65 ± 1.92 | −0.128 | 0.8981 |
Extraversion/scale | 7.12 ± 1.92 | 6.43 ± 1.85 | 2.834 | 0.0045 *# |
Openness/scale | 5.01 ± 1.84 | 4.56 ± 1.55 | 2.117 | 0.0342 * |
Agreeability/scale | 6.00 ± 2.36 | 5.71 ± 2.06 | 1.038 | 0.2993 |
Conscientiousness/scale | 7.26 ± 2.17 | 5.89 ± 1.99 | 5.165 | 0.0000 *# |
NEO Five-Factor Inventory | Group | BDNF Gene rs6265 | ANOVA | |||||
---|---|---|---|---|---|---|---|---|
G/G n = 176 M ± SD | A/G n = 74 M ± SD | A/A n = 8 M ± SD | Factor | F (p-Value) | η2 | Power (Alfa = 0.05) | ||
Neuroticism/scale | Martial Arts (MA); n = 106 | 4.29 ± 2.02 | 5.85 ± 2.43 | 6.67 ± 2.31 | intercept MA/control BDNF MA/control × BDNF | F1,252 = 385.18 (p < 0.0001) *# F1,252 = 2.72 (p = 0.1001) F2,252 = 6.23 (p = 0.0023) *# F2,252 = 3.11 (p = 0.0465) * | 0.604 0.011 0.047 0.024 | 1.000 0.376 0.892 0.594 |
Control; n = 152 | 4.55 ± 2.06 | 4.85 ± 1.60 | 4.80 ± 1.92 | |||||
Extraversion/scale | Martial Arts (MA); n = 106 | 7.39 ± 1.83 | 6.48 ± 2.04 | 6.00 ± 1.73 | intercept MA/control BDNF MA/control × BDNF | F1,252 = 721.50 (p < 0.0001)*# F1,252 = 0.06 (p = 0.8039) F2,252 = 1.25 (p = 0.2866) F2,252 = 2.44 (p = 0.0894) | 0.666 0.0002 0.001 0.020 | 1.000 0.057 0.272 0.488 |
Control; n = 152 | 6.38 ± 1.92 | 6.53 ± 1.72 | 6.60 ± 1.82 | |||||
Openness/scale | Martial Arts (MA); n = 106 | 4.95 ± 1.85 | 5.00 ± 1.84 | 6.67 ± 1.15 | intercept MA/control BDNF MA/control × BDNF | F1,252 = 501.71 (p < 0.0001) *# F1,252 = 8.62 (p = 0.0036) *# F2,252 = 0.16 (p = 0.8487) F2,252 = 2.39 (p = 0.0935) | 0.694 0.033 0.001 0.019 | 1.000 0.832 0.075 0.480 |
Control; n = 152 | 4.61 ± 1.56 | 4.55 ± 1.56 | 3.60 ± 1.14 | |||||
Agreeability/scale | Martial Arts (MA); n = 106 | 6.25 ± 2.37 | 5.55 ± 2.26 | 3.67 ± 1.15 | intercept MA/control BDNF MA/control × BDNF | F1,252 = 359.03 (p < 0.0001) *# F1,252 = 0.71 (p = 0.3976) F2,252= 2.48 (p = 0.0857) F2,252 = 1.18 (p = 0.3091) | 0.587 0.002 0.019 0.009 | 1.000 0.135 0.495 0.257 |
Control; n = 152 | 5.81 ± 2.10 | 5.51 ± 1.87 | 5.60 ± 3.21 | |||||
Conscientiousness/scale | Martial Arts (MA); n = 106 | 7.54 ± 2.04 | 6.67 ± 2.20 | 5.67 ± 4.16 | intercept MA/control BDNF MA/control × BDNF | F1,252 = 591.42 (p < 0.0001) *# F1,252 = 0.42 (p = 0.5162) F2,252 = 0.09 (p = 0.9101) F2,252 = 6.16 (p = 0.0024) *# | 0.701 0.002 0.001 0.047 | 1.000 0.099 0.064 0.888 |
Control; n = 152 | 5.57 ± 1.98 | 6.47 ± 1.91 | 6.80 ± 1.64 |
BDNF rs6265 and NEO FFI Neuroticism Scale | ||||||
---|---|---|---|---|---|---|
{1} M = 4.29 | {2} M = 5.85 | {3} M = 6.67 | {4} M = 4.55 | {5} M = 4.85 | {6} M = 4.80 | |
Martial arts BDNF G/G {1} | 0.0006 *# | 0.0461 * | 0.3963 | 0.1344 | 0.5837 | |
Martial arts BDNF A/G {2} | 0.5070 | 0.0032 *# | 0.0407 * | 0.2847 | ||
Martial arts BDNF A/A {3} | 0.0742 | 0.1315 | 0.2058 | |||
Control BDNF G/G {4} | 0.3990 | 0.7868 | ||||
Control BDNF A/G {5} | 0.9571 | |||||
Control BDNF A/A {6} | ||||||
BDNF rs6265 and NEO FFI conscientiousness scale | ||||||
{1} M = 7.34 | {2} M = 6.67 | {3} M = 5.67 | {4} M = 5.67 | {5} M = 6.47 | {6} M = 6.80 | |
Martial arts BDNF G/G{1} | 0.0561 | 0.1183 | 0.0000 *# | 0.0048 *# | 0.4309 | |
Martial arts BDNF A/G {2} | 0.4190 | 0.0134 * | 0.6858 | 0.8928 | ||
Martial arts BDNF A/A {3} | 0.9353 | 0.5080 | 0.4453 | |||
Control BDNF G/G {4} | 0.0130 * | 0.1873 | ||||
Control BDNF A/G {5} | 0.7284 | |||||
Control BDNF A/A {6} |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humińska-Lisowska, K.; Chmielowiec, J.; Chmielowiec, K.; Niewczas, M.; Lachowicz, M.; Cięszczyk, P.; Masiak, J.; Strońska-Pluta, A.; Michałowska-Sawczyn, M.; Maculewicz, E.; et al. Associations of Brain-Derived Neurotropic Factor rs6265 Gene Polymorphism with Personality Dimensions among Athletes. Int. J. Environ. Res. Public Health 2022, 19, 9732. https://doi.org/10.3390/ijerph19159732
Humińska-Lisowska K, Chmielowiec J, Chmielowiec K, Niewczas M, Lachowicz M, Cięszczyk P, Masiak J, Strońska-Pluta A, Michałowska-Sawczyn M, Maculewicz E, et al. Associations of Brain-Derived Neurotropic Factor rs6265 Gene Polymorphism with Personality Dimensions among Athletes. International Journal of Environmental Research and Public Health. 2022; 19(15):9732. https://doi.org/10.3390/ijerph19159732
Chicago/Turabian StyleHumińska-Lisowska, Kinga, Jolanta Chmielowiec, Krzysztof Chmielowiec, Marta Niewczas, Milena Lachowicz, Paweł Cięszczyk, Jolanta Masiak, Aleksandra Strońska-Pluta, Monika Michałowska-Sawczyn, Ewelina Maculewicz, and et al. 2022. "Associations of Brain-Derived Neurotropic Factor rs6265 Gene Polymorphism with Personality Dimensions among Athletes" International Journal of Environmental Research and Public Health 19, no. 15: 9732. https://doi.org/10.3390/ijerph19159732
APA StyleHumińska-Lisowska, K., Chmielowiec, J., Chmielowiec, K., Niewczas, M., Lachowicz, M., Cięszczyk, P., Masiak, J., Strońska-Pluta, A., Michałowska-Sawczyn, M., Maculewicz, E., & Grzywacz, A. (2022). Associations of Brain-Derived Neurotropic Factor rs6265 Gene Polymorphism with Personality Dimensions among Athletes. International Journal of Environmental Research and Public Health, 19(15), 9732. https://doi.org/10.3390/ijerph19159732