Modeling Primary Emissions of Chemicals from Liquid Products Applied on Indoor Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Development
2.2. Model Validation Using Measured Data
Parameter | Acetic Acid Emission from Floor Cleaning [46] | Decamethylcyclopentasiloxane (D5) Emission from Human Skin [45] |
---|---|---|
Diffusion coefficient in the material/skin (m2/s) | 5.05 × 10−10 [55] | 1.46 × 10−16 [45] |
Initial chemical concentration in the material/skin (µg/m3) | 0 (Assumed) | 8.80 × 1010 [45] |
Octanol/gas partition coefficient, Koa (-) | 1.66 × 105 (Calculated using EPI Suite) | 8.57 × 106 (Calculated using EPI Suite) |
Material/gas partition coefficient, Ksa (-) | 6.27 × 102 [55] | 3.27 × 104 [45] |
Liquid/material partition coefficient, Kls (-) | 2.65 × 102 (Estimated as Koa/Ksa) | 2.65 × 102 (Estimated as Koa/Ksa) |
Chemical concentration in the liquid (µg/m3) | 4.2 × 1010 [46] | Not needed for the model in stage 2 |
Material/skin thickness | 1.9 cm [55] | 1 µm [45] |
Material/skin area (m2) | 5.6 × 10−1 [46] | 2.28 (24 students) [45] |
Liquid mass applied (µg) | 2.52 × 106 [46] | Not needed for the model in stage 2 |
Convective mass transfer coefficient (m/s) | 9 × 10−4 [45] | 9 × 10−4 [45] |
Indoor volume (m3) | 2.45 × 101 [46] | 670 [45] |
Air flow rate (m3/s) | 8.33 × 10−3 [46] | 0.93 [45] |
Initial chemical concentration in indoor air (µg/m3) | 0 [46] | 0 [45] |
3. Results and Discussion
3.1. Predicted Indoor Concentrations Following Product Use
3.2. Sensitivity Analysis of Parameters Influencing the Emission
3.2.1. Chemical Diffusion Coefficient in the Material/Skin
3.2.2. Chemical’s Octanol/Gas and Material/Gas Partition Coefficients
3.2.3. Material/Skin Thickness
3.2.4. Indoor Air Flow Rate
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eichler, C.M.A.; Hubal, E.A.C.; Xu, Y.; Cao, J.; Bi, C.; Weschler, C.J.; Salthammer, T.; Morrison, G.C.; Koivisto, A.J.; Zhang, Y.; et al. Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environ. Sci. Technol. 2021, 55, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Seifert, B.; Ullrich, D. Methodologies for evaluating sources of volatile organic chemicals (VOC) in homes. Atmos. Environ. 1987, 21, 395–404. [Google Scholar] [CrossRef]
- Little, J.C.; Hodgson, A.T.; Gadgil, A.J. Modeling emissions of volatile organic compounds from new carpets. Atmos. Environ. 1994, 28, 227–234. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y. General analytical mass transfer model for VOC emissions from multi-layer dry building materials with internal chemical reactions. Chin. Sci. Bull. 2011, 56, 222–228. [Google Scholar] [CrossRef]
- Hu, H.P.; Zhang, Y.P.; Wang, X.K.; Little, J.C. An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surfaces on both sides. Int. J. Heat Mass Transf. 2007, 50, 2069–2077. [Google Scholar] [CrossRef]
- Yuan, H.; Little, J.C.; Marand, E.; Liu, Z. Using fugacity to predict volatile emissions from layered materials with a clay/polymer diffusion barrier. Atmos. Environ. 2007, 41, 9300–9308. [Google Scholar] [CrossRef]
- Haghighat, F.; Huang, H. Integrated IAQ model for prediction of VOC emissions from building material. Build. Environ. 2003, 38, 1007–1017. [Google Scholar] [CrossRef]
- Li, F.; Niu, J.; Zhang, L. A physically-based model for prediction of VOCs emissions from paint applied to an absorptive substrate. Build. Environ. 2006, 41, 1317–1325. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Q.; Zeng, J.; Zhang, J.; Shaw, C. A mass transfer model for simulating volatile organic compound emissions from ‘wet’ coating materials applied to absorptive substrates. Int. J. Heat Mass Transf. 2001, 44, 1803–1815. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, Z.; Wang, X.; Wang, F. Mathematical model for characterizing the full process of volatile organic compound emissions from paint film coating on porous substrates. Build. Environ. 2020, 182, 107062. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Hu, W.-H.; Fang, W.-B.; Chen, S.-S.; Chang, C.-T.; Ching, H.-W. A Study on Dynamic Volatile Organic Compound Emission Characterization of Water-Based Paints. J. Air Waste Manag. Assoc. 2011, 61, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhang, B.; Qiu, Y. Analytical solution of VOCs emission from wet materials with variable thickness. Build. Environ. 2016, 104, 145–151. [Google Scholar] [CrossRef]
- Altinkaya, S.A. Predicting emission characteristics of volatile organic compounds from wet surface coatings. Chem. Eng. J. 2009, 155, 586–593. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, Y.; Huang, S. Characterisation of VOC and Formaldehyde Emission from Building Materials in a Static Environmental Chamber: Model Development and Application. Indoor Built Environ. 2011, 20, 217–225. [Google Scholar] [CrossRef]
- Bourdin, D.; Mocho, P.; Desauziers, V.; Plaisance, H. Formaldehyde emission behavior of building materials: On-site measurements and modeling approach to predict indoor air pollution. J. Hazard. Mater. 2014, 280, 164–173. [Google Scholar] [CrossRef]
- Wei, W.; Xiong, J.; Zhao, W.; Zhang, Y. A framework and experimental study of an improved VOC/formaldehyde emission reference for environmental chamber tests. Atmos. Environ. 2014, 82, 327–334. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Zhang, Y. Predicting Dermal Exposure to Gas-Phase Semivolatile Organic Compounds (SVOCs): A Further Study of SVOC Mass Transfer between Clothing and Skin Surface Lipids. Environ. Sci. Technol. 2018, 52, 4676–4683. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Z.; Park, J.; Clausen, P.A.; Benning, J.L.; Little, J.C. Measuring and Predicting the Emission Rate of Phthalate Plasticizer from Vinyl Flooring in a Specially-Designed Chamber. Environ. Sci. Technol. 2012, 46, 12534–12541. [Google Scholar] [CrossRef]
- Xu, Y.; Little, J.C. Predicting Emissions of SVOCs from Polymeric Materials and Their Interaction with Airborne Particles. Environ. Sci. Technol. 2006, 40, 456–461. [Google Scholar] [CrossRef]
- Xu, Y.; Cohen Hubal, E.A.; Clausen, P.A.; Little, J.C. Predicting Residential Exposure to Phthalate Plasticizer Emitted from Vinyl Flooring: A Mechanistic Analysis. Environ. Sci. Technol. 2009, 43, 2374–2380. [Google Scholar] [CrossRef]
- Bi, C.; Wang, X.; Li, H.; Li, X.; Xu, Y. Direct Transfer of Phthalate and Alternative Plasticizers from Indoor Source Products to Dust: Laboratory Measurements and Predictive Modeling. Environ. Sci. Technol. 2021, 55, 341–351. [Google Scholar] [CrossRef]
- Liang, Y.; Bi, C.; Wang, X.; Xu, Y. A general mechanistic model for predicting the fate and transport of phthalates in indoor environments. Indoor Air 2019, 29, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ramalho, O.; Mandin, C. A long-term dynamic model for predicting the concentration of semivolatile organic compounds in indoor environments: Application to phthalates. Build. Environ. 2019, 148, 11–19. [Google Scholar] [CrossRef]
- Deng, B.; Kim, C.N. An analytical model for VOCs emission from dry building materials. Atmos. Environ. 2004, 38, 1173–1180. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y. An improved mass transfer based model for analyzing VOC emissions from building materials. Atmos. Environ. 2003, 37, 2497–2505. [Google Scholar] [CrossRef]
- Kang, D.H.; Choi, D.H.; Seong, Y.-B.; Yeo, M.S.; Kim, K.W. A numerical simulation of VOC emission and sorption behaviors of adhesive-bonded materials under floor heating condition. Build. Environ. 2013, 68, 193–201. [Google Scholar] [CrossRef]
- Deng, B.; Zhang, H.; Wu, J. Modeling VOCs emission/sorption with variable operating parameters and general boundary conditions. Environ. Pollut. 2021, 271, 116315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Deng, B.; Guo, Y. A unified model for VOCs emission/sorption from/on building materials with and without ventilation. Int. J. Heat Mass Transf. 2013, 67, 734–740. [Google Scholar] [CrossRef]
- Lee, C.-S.; Haghighat, F.; Ghaly, W.S. A study on VOC source and sink behavior in porous building materials—Analytical model development and assessment. Indoor Air 2005, 15, 183–196. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, C.; Zhang, Y. A general analytical model for formaldehyde and VOC emission/sorption in single-layer building materials and its application in determining the characteristic parameters. Atmos. Environ. 2012, 47, 288–294. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Q.; Zhang, J.S.; An, Y.; Zeng, J.; Shaw, C.Y. A mass transfer model for simulating VOC sorption on building materials. Atmos. Environ. 2001, 35, 1291–1299. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, C.; Wang, X.; Liu, K. Simplified methods for characterizing dynamic sorption of SVOCs on viscous particles. Atmos. Environ. 2020, 241, 117796. [Google Scholar] [CrossRef]
- Wu, Y.; Eichler, C.M.A.; Leng, W.; Cox, S.S.; Marr, L.C.; Little, J.C. Adsorption of Phthalates on Impervious Indoor Surfaces. Environ. Sci. Technol. 2017, 51, 2907–2913. [Google Scholar] [CrossRef]
- Eichler, C.M.A.; Cao, J.; Isaacman-VanWertz, G.; Little, J.C. Modeling the formation and growth of organic films on indoor surfaces. Indoor Air 2019, 29, 17–29. [Google Scholar] [CrossRef]
- Liu, C.; Shi, S.; Weschler, C.; Zhao, B.; Zhang, Y. Analysis of the Dynamic Interaction Between SVOCs and Airborne Particles. Aerosol Sci. Technol. 2013, 47, 125–136. [Google Scholar] [CrossRef]
- Wei, W.; Mandin, C.; Ramalho, O. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds. Chemosphere 2018, 195, 223–235. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, X.; Wang, X.; Qian, K.; Zhao, R. Influence of temperature on formaldehyde emission parameters of dry building materials. Atmos. Environ. 2007, 41, 3203–3216. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, P.; Huang, S.; Zhang, Y. Comprehensive influence of environmental factors on the emission rate of formaldehyde and VOCs in building materials: Correlation development and exposure assessment. Environ. Res. 2016, 151, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, F.; De Bellis, L. Material emission rates: Literature review, and the impact of indoor air temperature and relative humidity. Build. Environ. 1998, 33, 261–277. [Google Scholar] [CrossRef]
- Wei, W.; Little, J.C.; Ramalho, O.; Mandin, C. Predicting chemical emissions from household cleaning and personal care products: A review. Build. Environ. 2022, 207, 108483. [Google Scholar] [CrossRef]
- Earnest, C.M.; Corsi, R.L. Inhalation exposure to cleaning products: Application of a two-zone model. J. Occup. Environ. Hyg. 2013, 10, 328–335. [Google Scholar] [CrossRef] [PubMed]
- McCready, D.; Fontaine, D. Refining ConsExpo Evaporation and Human Exposure Calculations for REACH. Hum. Ecol. Risk Assess. Int. J. 2010, 16, 783–800. [Google Scholar] [CrossRef]
- Teixeira, M.A.; Rodríguez, O.; Rodrigues, A.E. Diffusion and performance of fragranced products: Prediction and validation. AIChE J. 2013, 59, 3943–3957. [Google Scholar] [CrossRef]
- Kasting, G.B.; Miller, M.A. Kinetics of finite dose absorption through skin 2: Volatile compounds. J. Pharm. Sci. 2006, 95, 268–280. [Google Scholar] [CrossRef]
- Yang, T.; Xiong, J.; Tang, X.; Misztal, P.K. Predicting Indoor Emissions of Cyclic Volatile Methylsiloxanes from the Use of Personal Care Products by University Students. Environ. Sci. Technol. 2018, 52, 14208–14215. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.; Ramachandran, G.; Kaup, H.; Servadio, J. Estimating the time-varying generation rate of acetic acid from an all-purpose floor cleaner. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 374–382. [Google Scholar] [CrossRef]
- Kasting, G.B.; Saiyasombati, P. A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin. Int. J. Cosmet. Sci. 2001, 23, 49–58. [Google Scholar] [CrossRef]
- Saiyasombati, P.; Kasting, G.B. Two-stage kinetic analysis of fragrance evaporation and absorption from skin. Int. J. Cosmet. Sci. 2003, 25, 235–243. [Google Scholar] [CrossRef]
- Ernstoff, A.S.; Fantke, P.; Csiszar, S.A.; Henderson, A.D.; Chung, S.; Jolliet, O. Multi-pathway exposure modeling of chemicals in cosmetics with application to shampoo. Environ. Int. 2016, 92–93, 87–96. [Google Scholar] [CrossRef]
- Mackay, D.; Van Wesenbeeck, I. Correlation of chemical evaporation rate with vapor pressure. Environ. Sci. Technol. 2014, 48, 10259–10263. [Google Scholar] [CrossRef]
- Kajimura, K.; Tagami, T.; Yamamoto, T.; Iwagami, S. The Release of Formaldehyde upon Decomposition of 2-Bromo-2-nitropropan-1, 3-diol (Bronopol). J. Health Sci. 2008, 54, 488–492. [Google Scholar] [CrossRef]
- Nazaroff, W.W.; Weschler, C.J. Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmos. Environ. 2004, 38, 2841–2865. [Google Scholar] [CrossRef]
- Yeoman, A.M.; Shaw, M.; Carslaw, N.; Murrells, T.; Passant, N.; Lewis, A.C. Simplified speciation and atmospheric volatile organic compound emission rates from non-aerosol personal care products. Indoor Air 2020, 30, 459–472. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Download EPI SuiteTM—Estimation Program Interface v4.11. 2012. Available online: https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411 (accessed on 28 July 2022).
- Yao, Y.; Xiong, J.; Liu, W.; Mo, J.; Zhang, Y. Determination of the equivalent emission parameters of wood-based furniture by applying C-history method. Atmos. Environ. 2011, 45, 5602–5611. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Little, J.C.; Nicolas, M.; Ramalho, O.; Mandin, C. Modeling Primary Emissions of Chemicals from Liquid Products Applied on Indoor Surfaces. Int. J. Environ. Res. Public Health 2022, 19, 10122. https://doi.org/10.3390/ijerph191610122
Wei W, Little JC, Nicolas M, Ramalho O, Mandin C. Modeling Primary Emissions of Chemicals from Liquid Products Applied on Indoor Surfaces. International Journal of Environmental Research and Public Health. 2022; 19(16):10122. https://doi.org/10.3390/ijerph191610122
Chicago/Turabian StyleWei, Wenjuan, John C. Little, Mélanie Nicolas, Olivier Ramalho, and Corinne Mandin. 2022. "Modeling Primary Emissions of Chemicals from Liquid Products Applied on Indoor Surfaces" International Journal of Environmental Research and Public Health 19, no. 16: 10122. https://doi.org/10.3390/ijerph191610122
APA StyleWei, W., Little, J. C., Nicolas, M., Ramalho, O., & Mandin, C. (2022). Modeling Primary Emissions of Chemicals from Liquid Products Applied on Indoor Surfaces. International Journal of Environmental Research and Public Health, 19(16), 10122. https://doi.org/10.3390/ijerph191610122