From Sewage Sludge to the Soil—Transfer of Pharmaceuticals: A Review
Abstract
:1. Introduction
2. Final Disposal of Sewage Sludge—Granular Fertilizer
3. The Content of Sewage Sludge—Properties and Limits in Agricultural Management
4. Analytical Methods for the Determination of Pharmaceuticals
5. Pharmaceuticals in Sewage Sludge
6. The Presence of Pharmaceuticals in Soil after Sewage Sludge Distribution
7. Ecological Effect an Environmental Risk Assessment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Act of 14 December 2012 on Waste. Available online: https://www.global-regulation.com/translation/poland/8302260/act-of-14-december-2012-on-waste.html (accessed on 10 May 2022).
- Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemiere, S. Sanitary and environmental aspects of sewage sludge management. In Industrial and Municipal Sludge, Emerging Concerns and Scope for Resource Recovery; Prasad, M.N.V., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 155–180. [Google Scholar]
- Twardowska, I.; Schramm, K.W.; Berg, K. Sewage sludge. In Waste Management Series. Solid Waste: Assessment, Monitoring and Remediation; Twardowska, A., Kettrup, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 239–295. [Google Scholar] [CrossRef]
- Przydatek, G.; Wota, A.K. Analysis of the comprehensive management of sewage sludge in Poland. J. Mater. Cycles Waste Manag. 2020, 22, 80–88. [Google Scholar] [CrossRef]
- Environment 2021. In Statistical Analyses, Supervised by Domańska, W., ISSN 0867-3217, Warsaw; 2021. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5484/1/22/1/ochrona_srodowiska_2021.pdf (accessed on 10 May 2022).
- Głodniok, M.; Korol, J.; Zawartka, P.; Krawczyk, B.; Deska, M. Organic Fertilizer and Method for Obtaining It. Polish Patent Off. 233754, 29 October 2019. [Google Scholar]
- Kaszycki, P.; Głodniok, M.; Petryszak, P. Towards a bio-based circular economy in organic waste management and wastewater treatment—The Polish perspective. New Biotechnol. 2021, 61, 80–89. [Google Scholar] [CrossRef] [PubMed]
- The Act of 10 July 2007 about Fertilizers and Fertilization. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20071471033/U/D20071033Lj.pdf (accessed on 10 May 2022).
- Głodniok, M.; Deska, M.; Kaszycki, P. Impact of the Stabilized Sewage Sludge-Based Granulated Fertilizer on Sinapis alba Growth and Biomass Chemical Characteristics. Biol. Life Sci. Forum 2021, 3, 35. [Google Scholar] [CrossRef]
- Stasinakis, A.S. Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour. Technol. 2012, 121, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; Borrull, F.; Pocurull, E.; Marcé, R.M. Occurrence of pharmaceuticals and hormones in sewage sludge. Environ. Toxicol. Chem. 2010, 29, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Semblante, G.U.; Hai, F.I.; Huang, X.; Ball, A.S.; Price, W.E.; Nghiem, L.D. Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives. J. Hazard. Mater. 2015, 300, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Zambello, E. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil—A critical review. Sci. Total Environ. 2015, 538, 750–767. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Gong, H.; Dai, L.; Dai, X. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environ. Pollut. 2020, 266, 115375. [Google Scholar] [CrossRef]
- Ordinance of the Minister of the Environment of 6 February 2015 on Municipal Sewage Sludge. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000257/O/D20150257.pdf (accessed on 10 May 2022).
- Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20081190765/O/D20080765.pdf (accessed on 10 May 2022).
- Dubey, M.; Mohapatra, S.; Tyagi, V.K.; Suthar, S.; Kazmi, A.A. Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. Environ. Pollut. 2021, 273, 116515. [Google Scholar] [CrossRef]
- Cucina, M.; Ricci, A.; Zadra, C.; Pezzolla, D.; Tacconi, C.; Sordi, S.; Gigliotti, G. Benefits and risks of long-term recycling of pharmaceutical sewage sludge on agricultural soil. Sci. Total Environ. 2019, 695, 133762. [Google Scholar] [CrossRef]
- Martín-Pozo, L.; de Alarcón-Gómeza, B.; Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Zafra-Gómez, A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019, 192, 508–533. [Google Scholar] [CrossRef]
- Perez-Lemus, N.; Lopez-Serna, R.; Perez-Elvira, S.I.; Barrado, E. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Anal. Chim. Acta 2019, 1083, 19–40. [Google Scholar] [CrossRef]
- Zuloaga, O.; Navarro, P.; Bizkarguenaga, E.; Iparraguirre, A.; Vallejo, A.; Olivares, M.; Prieto, A. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Anal. Chim. Acta 2012, 736, 7–29. [Google Scholar] [CrossRef]
- Bolesta, W.; Głodniok, M.; Pieczonka, M.; Styszko, K. Antibiotics and endocrine disruptors in sewage sludge samples in terms of its agriculture use. Desalin. Water Treat. 2021, 232, 280–297. [Google Scholar] [CrossRef]
- Yuan, X.; Qiang, Z.; Ben, W.; Zhu, B.; Liu, J. Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography–tandem mass spectrometry. J. Environ. Sci. 2014, 26, 1949–1959. [Google Scholar] [CrossRef]
- Guerra, P.; Kim, M.; Shah, A.; Alaee, M.; Smyth, S.A. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ. 2014, 473–474, 235–243. [Google Scholar] [CrossRef]
- Llorens-Blanch, G.; Badia-Fabregat, M.; Lucas, D.; Rodriguez Mozaz, S.; Barceló, D.; Pennanen, T.; Caminal, G.; Blánquez, P. Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor. Environ. Sci. Process. Impacts 2015, 17, 429–440. [Google Scholar] [CrossRef]
- Svahn, O.; Björklund, E. Extraction efficiency of a commercial espresso machine compared to a stainless-steel column pressurized hot water extraction (PHWE) system for the determination of 23 pharmaceuticals, antibiotics and hormones in sewage sludge. Appl. Sci. 2019, 9, 1509. [Google Scholar] [CrossRef]
- Pamreddy, A.; Hidalgo, M.; Havel, J.; Salvadó, V. Determination of antibiotics (tetracyclines and sulfonamides) in biosolids by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1298, 68–75. [Google Scholar] [CrossRef]
- Chen, Q.C.; Shi, J.H.; Wu, W.; Liu, X.W.; Zhang, H. A new pretreatment and improved method for determination of selected estrogens in high matrix solid sewage samples by liquid chromatography–mass spectrometry. Microchem. J. 2012, 104, 49–55. [Google Scholar] [CrossRef]
- Man, Y.B.; Chow, K.L.; Tsang, Y.F.; Lau, F.T.K.; Fung, W.C.; Wong, M.H. Fate of bisphenol A, perfluorooctanoic acid and perfluorooctanesulfonate in two different types of sewage treatment works in Hong Kong. Chemosphere 2018, 190, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Gorga, M.; Insa, S.; Petrovic, M.; Barceló, D. Analysis of endocrine disrupters and related compounds in sediment sand sewage sludge using on-line turbulent-flow chromatography–liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2014, 1352, 29–37. [Google Scholar] [CrossRef]
- Ternes, T.A.; Andersen, H.; Gilberg, D.; Bonerz, M. Determination of Estrogens in Sludge and Sediments by Liquid Extraction and GC/MS/MS. Anal. Chem. 2002, 74, 3498–3504. [Google Scholar] [CrossRef] [PubMed]
- Esperanza, M.; Suidan, M.T.; Marfil-Vega, R.; Gonzalez, C.; Sorial, G.A.; McCauley, P.; Brenner, R. Fate of sex hormones in two pilot-scale municipal wastewater treatment plants: Conventional treatment. Chemosphere 2007, 66, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Camacho-Muñoz, D.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard. Mater. 2012, 239–240, 40–47. [Google Scholar] [CrossRef]
- Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends Environ. Anal. Chem. 2021, 30, e00125. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, G.; Cao, Q.; Zhang, H.; Lin, Q.; Hong, Y. Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge. Chemosphere 2013, 93, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Menon, N.G.; Padhye, L.P.; Tatiparti, S.S.V.; Mukherji, S. Natural Attenuation of Pharmaceuticals in the Aquatic Environment and Role of Phototransformation. In Contaminants in Drinking and Wastewater Sources; Kumar, M., Snow, D.D., Honda, R., Mukherjee, S., Eds.; Springer: Singapore, 2021; pp. 65–94. [Google Scholar] [CrossRef]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A review of the fate of micropollutants in wastewater treatment plants. WIREs Water 2015, 2, 457–487. [Google Scholar] [CrossRef]
- Styszko, K.; Proctor, K.; Castrignanò, E.; Kasprzyk-Hordern, B. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Sci. Total Environ. 2021, 768, 144360. [Google Scholar] [CrossRef]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef]
- Das, S.; Ray, N.M.; Wan, J.; Khan, A.; Chakraborty, T.; Ray, M.B. Micropollutants in Wastewater: Fate and Removal Processes. In Physico-Chemical Wastewater Treatment and Resource Recovery; Farooq, R., Ed.; Intech Open: London, UK, 2017. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Ying, G.-G.; Liu, S.; Zhao, J.-L.; Yang, B.; Chen, Z.-F.; Lai, H.-J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total Environ. 2013, 452-453, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Pedrouzo, M.; Borrull, F.; Pocurull, E.; Marce, R.M. Presence of pharmaceuticals and hormones in water from sewage treatment plants. Water Air Soil Poll. 2011, 217, 267–281. [Google Scholar] [CrossRef]
- Lindberg, R.H.; Wennberg, P.; Johansson, M.I.; Tysklind, M.; Andersson, B.A.V. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ. Sci. Technol. 2005, 39, 3421–3429. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef]
- Styszko, K. Sorption of emerging organic micropollutants onto fine sediments in a water supply dam reservoir. J. Soils Sediments 2016, 16, 677–688. [Google Scholar] [CrossRef]
- Gonzalez-Gil, L.; Papa, M.; Feretti, D.; Ceretti, E.; Mazzoleni, G.; Steimberg, N.; Pedrezzani, R.; Bertanza, G.; Lema, J.; Carballa, M. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge? Water Res. 2016, 102, 211–220. [Google Scholar] [CrossRef]
- Shi, H.; Wang, X.C.; Li, Q.; Jiang, S. Degradation of typical antibiotics during human feces aerobic composting under different temperatures. Environ. Sci. Pollut. Res. 2016, 23, 15076–15087. [Google Scholar] [CrossRef]
- Gonzalez-Gil, L.; Mauricio-Iglesias, M.; Serrano, D.; Lema, J.M.; Carballa, M. Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion. Sci. Total Environ. 2018, 622–623, 459–466. [Google Scholar] [CrossRef]
- Paterakis, N.; Chiu, T.Y.; Koh, Y.K.K.; Lester, J.N.; McAdam, E.J.; Scrimshaw, M.D.; Soares, A.; Cartmell, E. The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates. J. Hazard. Mater. 2012, 199–200, 88–95. [Google Scholar] [CrossRef]
- Youngquist, C.P.; Mitchell, S.M.; Cogger, C.G. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. J. Environ. Qual. 2016, 45, 537–545. [Google Scholar] [CrossRef]
- Haiba, E.; Nei, L.; Herodes, K.; Ivask, M.; Lillenberg, M. On the degradation of metformin and carbamazepine residues in sewage sludge compost. Agron. Res. 2018, 16, 696–707. [Google Scholar] [CrossRef]
- Khadra, A.; Ezzariai, A.; Merlina, G.; Capdeville, M.J.; Budzinski, H.; Hamdi, H.; Pinelli, E.; Hafidi, M. Fate of antibiotics present in a primary sludge of WWTP during their co-composting with palm wastes. Waste Manag. 2019, 84, 13–19. [Google Scholar] [CrossRef]
- Yang, B.; Meng, L.; Xue, N. Removal of five fluoroquinolone antibiotics during broiler manure composting. Environ. Technol. 2018, 39, 373–381. [Google Scholar] [CrossRef]
- Bastos, M.C.; Soubrand, M.; Le Guet, T.; Floch, E.; Joussein, E.; Baudu, M.; Casellas, M. Occurrence, fate and environmental risk assessment of pharmaceutical compounds in soils amended with organic wastes. Geoderma 2020, 375, 114498. [Google Scholar] [CrossRef]
- Lachassagne, D.; Soubrand, M.; Casellas, M.; Gonzalez-Ospina, A.; Dagot, C. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments. Environ. Sci. Pollut. Res. Int. 2015, 22, 17135–17150. [Google Scholar] [CrossRef]
- Golet, E.M.; Strehler, A.; Alder, A.C.; Giger, W. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem. 2002, 74, 5455–5462. [Google Scholar] [CrossRef]
- Golet, E.M.; Xifra, I.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003, 37, 3243–3249. [Google Scholar] [CrossRef]
- Walters, E.; McClellan, K.; Halden, R.U. Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids—soil mixtures in outdoor mesocosms. Water Res. 2010, 44, 6011–6020. [Google Scholar] [CrossRef]
- Bourdat-Deschamps, M.; Ferhi, S.; Bernet, N.; Feder, F.; Crouzet, O.; Patureau, D.; Montenach, D.; Moussard, G.D.; Mercier, V.; Benoit, P.; et al. Fate and impacts of pharmaceuticals and personal care products after repeated applications of organic waste products in long-term field experiments. Sci. Total Environ. 2017, 607, 608–609. [Google Scholar] [CrossRef]
- Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ. Sci. Technol. 2008, 42, 1863–1870. [Google Scholar] [CrossRef]
- Gottschall, N.; Topp, E.; Metcalfe, C.; Edwards, M.; Payne, M.; Kleywegt, S.; Rusell, P.; Lapen, D.R. Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. Chemosphere 2012, 87, 194–203. [Google Scholar] [CrossRef]
- Edwards, M.; Topp, E.; Metcalfe, C.D.; Li, H.; Gottschall, N.; Bolton, P.; Curnoe, W.; Payne, M.; Beck, A.; Kleywegt, S.; et al. Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field. Sci. Total Environ. 2009, 407, 4220–4230. [Google Scholar] [CrossRef]
- Li, W.C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef]
- Barron, L.; Havel, J.; Purcell, M.; Szpak, M.; Kelleher, B.; Paull, B. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks. Analyst 2009, 124, 663–670. [Google Scholar] [CrossRef]
- Kavitha, V. Global prevalence and visible light mediated photodegradation of pharmaceuticals and personal care products (PPCPs)—A review. Results Eng. 2022, 14, 100469. [Google Scholar] [CrossRef]
- León, C.; Henríquez, C.; López, N.; Sanchez, G.; Pasténc, B.; Baezac, P.; Ojedaa, J. Inhibitory effect of the Ascorbic Acid on photodegradation of pharmaceuticals compounds exposed to UV-B radiation. J. Photochem. Photobiol. 2021, 7, 100035. [Google Scholar] [CrossRef]
- Márquez Brazón, E.; Piccirillo, C.; Moreira, I.S.; Castro, P.M.L. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. J. Environ. Manag. 2016, 182, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Murgolo, S.; Petronella, F.; Ciannarella, R.; Comparelli, R.; Agostiano, A.; Curri, M.L.; Mascolo, G. UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catal. Today 2015, 240, 114–124. [Google Scholar] [CrossRef]
- Díaz-Cruz, S.; Barceló, D. Occurrence and analysis of selected pharmaceuticals and metabolites as contaminants present in wastewaters, sludge and sediments. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2004; Volume 5. [Google Scholar] [CrossRef]
- Chefetz, B.; Mualem, T.; Ben-Ari, J. Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere 2008, 73, 1335–1343. [Google Scholar] [CrossRef]
- Shao, Y.; Yang, K.; Jia, R.; Tian, C.; Zhu, Y. Degradation of triclosan and carbamazepine in two agricultural and garden soils with different textures amended with composted sewage sludge. Int. J. Environ. Res. Public Health 2018, 15, 2557. [Google Scholar] [CrossRef]
- García-Valcárcel, A.I.; Tadeo, J.L. Influence of moisture on the availability and persistence of clotrimazole and fluconazole in sludge-amended soil. Environ. Toxicol. Chem. 2012, 31, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Camacho-Muñoz, M.D.; Santos, J.L.; Aparicio, I.; Alonso, E. Distribution and temporal evolution of pharmaceutically active compounds alongside sewage sludge treatment. Risk assessment of sludge application onto soils. J. Environ. Manag. 2012, 102, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Albero, B.; Sánchez-Brunete, C.; Miguel, E.; Pérez, R.A.; Tadeo, J.L. Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1283, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Ben Mordechay, E.; Tarchitzky, J.; Chen, Y.; Shenker, M.; Chefetz, B. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine. Environ. Pollut. 2018, 232, 164–172. [Google Scholar] [CrossRef]
- Wang, N.; Guo, X.; Xu, J.; Hao, L.; Kong, D.; Gao, S. Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil–manure systems. J. Environ. Sci. Health Part B 2014, 50, 23–33. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils—A review. J. Plant Nutr. Soil. Sci. 2003, 166, 145–167. [Google Scholar] [CrossRef]
- Díaz-Cruz, M.S.; García-Galán, M.J.; Guerra, P.; Jelic, A.; Postigo, C.; Eljarrat, E.; Farré, M.; López de Alda, M.J.; Petrovic, M.; Barceló, D. Analysis of selected emerging contaminants in sewage sludge. Trends Anal. Chem. 2009, 28, 1263–1275. [Google Scholar] [CrossRef]
- Xia, K.; Bhandari, A.; Das, K.; Pillar, G. Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. J. Environ. Qual. 2015, 34, 91–104. [Google Scholar] [CrossRef]
- Monteiro, S.C.; Boxall, A.B. Occurrence and Fate of Human Pharmaceuticals in the Environment. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2010; pp. 52–154. [Google Scholar] [CrossRef]
- Jones, V.; Gardner, M.; Ellor, B. Concentrations of trace substances in sewage sludge from 28 wastewater works in UK. Chemosphere 2014, 111, 478–484. [Google Scholar] [CrossRef]
- Sharma, V.K.; Johnson, N.; Cizmas, L.; McDonald, T.J.; Kim, H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 2016, 150, 702–714. [Google Scholar] [CrossRef]
- Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y.G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92–93, 1–10. [Google Scholar] [CrossRef]
- Frková, Z.; Vystavna, Y.; Koubová, A.; Kotas, P.; Grabicová, K.; Grabic, R.; Kodešová, R.; Chroňáková, A. Microbial responses to selected pharmaceuticals in agricultural soils: Microcosm study on the roles of soil, treatment and time. Soil Biol. Biochem. 2020, 149, 107924. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Available online: http://data.europa.eu/eli/dec_impl/2022/1307/oj (accessed on 27 July 2022).
- Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee European Union Strategic Approach to Pharmaceuticals in the Environment, COM/2019/128 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0128 (accessed on 10 May 2022).
- Küster, A.; Adler, N. Pharmaceuticals in the environment: Scientific evidence of risks and its regulation. Philos. Trans. R. Soc. B 2014, 19, 20130587. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Santás-Miguel, V.; Cela-Dablanca, R.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Pérez-Rodríguez, P.; Arias-Estévez, M. Ciprofloxacin and Trimethoprim Adsorption/Desorption in Agricultural Soils. Int. J. Environ. Res. Public Health 2022, 19, 8426. [Google Scholar] [CrossRef]
- Murray, R.; Tien, Y.C.; Scott, A.; Topp, E. The impact of municipal sewage sludge stabilization processes on the abundance, field persistence, and transmission of antibiotic resistant bacteria and antibiotic resistance genes to vegetables at harvest. Sci Total Environ. 2019, 651 Pt 2, 1680–1687. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.; Sun, C.; Wang, W.; Wu, Y.; Fan, L.; Liu, B. Profile of Bacterial Community and Antibiotic Resistance Genes in Typical Vegetable Greenhouse Soil. Int. J. Environ. Res. Public Health 2022, 19, 7742. [Google Scholar] [CrossRef]
- Jauregi, L.; Epelde, L.; Alkorta, I.; Garbisu, C. Agricultural Soils Amended with Thermally-Dried Anaerobically-Digested Sewage Sludge Showed Increased Risk of Antibiotic Resistance Dissemination. Front. Microbiol. 2021, 12, 666854. [Google Scholar] [CrossRef]
- Styszko, K.; Durak, J.; Kończak, B.; Głodniok, M.; Borgulat, A. The impact of sewage sludge processing on the safety of its use. Sci. Rep. 2022, 12, 12227. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar] [CrossRef]
- Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. Pharmaceuticals in the soil and plant environment: A review. Water Air Soil Pollut. 2021, 232, 145. [Google Scholar] [CrossRef]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Kodešová, R.; Klement, A.; Golovko, O.; Fér, M.; Kočárek, M.; Nikodem, A.; Grabic, R. Soil influences on uptake and transfer of pharmaceuticals from sewage sludge amended soils to spinach. J. Environ. Manag. 2019, 250, 109407. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E.; Ruffo, F.; Racchi, M. Steroid hormones, endocrine disrupting compounds and immunotoxicology. Curr. Opin. Toxicol. 2018, 10, 69–73. [Google Scholar] [CrossRef]
- Fent, K. Effects of Pharmaceuticals on Aquatic Organisms. In Pharmaceuticals in the Environment; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 175–203. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R.; Jefferson, W.N.; Padilla-Banks, E. Prenatal exposure to bisphenol A at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ. Health Perspect. 2009, 117, 879–885. [Google Scholar] [CrossRef]
- Liu, J.; Lu, G.; Xie, Z.; Zhang, Z.; Li, S.; Yan, Z. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Sci. Total Environ. 2015, 511, 54–62. [Google Scholar] [CrossRef]
- EMEA. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use; EMEA/CHMP/SWP/4447/00 corr 21; European Medicine Agency, Committee for Medicinal Products for Human Use (CHMP): Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zhou, S.; Di Paolo, C.; Wu, X.; Shao, Y.; Seiler, T.-B.; Hollert, H. Optimization of screening-level risk assessment and priority selection of emerging pollutants—The case of pharmaceuticals in European surface water. Environ. Int. 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Fernandez-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Martín, J.; Mejías, C.; Santos, J.L.; Aparicio, I.; Alonso, E. Pharmaceuticals and Their Main Metabolites in Treated Sewage Sludge and Sludge-Amended Soil: Availability and Sorption Behaviour. Molecules 2021, 26, 5910. [Google Scholar] [CrossRef]
Specification | 2000 | 2005 | 2010 | 2015 | 2019 | 2020 |
---|---|---|---|---|---|---|
in Thousand Tons of Dry Solid | ||||||
Total sewage sludge generated during the year of which: | 1063.1 | 1124.4 | 895.1 | 951.5 | 1048.7 | 989.5 |
applied in agriculture; | 212.2 | 98.2 | 136.9 | 126.6 | 141.9 | 160.4 |
applied in land reclamation including reclamation of land for agricultural purposes; | 154.9 | 324.9 | 150.4 | 31.3 | 24.5 | 26.5 |
applied in cultivation of plants intended for compost production; | 28.1 | 29.6 | 31.3 | 48.2 | 31.7 | 30.5 |
thermally transformed; | 34.1 | 37.4 | 66.4 | 165.4 | 195.7 | 219.4 |
landfilled; | 474.5 | 399.1 | 165.9 | 131.5 | 113.3 | 63.9 |
sewage sludge accumulated on the wastewater treatment plants | 14,654 | 9342.8 | 6450.5 | 6483.9 | 6191.2 | 6143.6 |
Compound | Measured Concentration [ng/g dm] | References |
---|---|---|
Ciprofloxacin | 350–400 after 8 months of sludge application | [56] |
270–280 after 21 months | [56] | |
450 (2.5 cm depth) | [57] | |
542 (day 0)–390 (day 994) | [58] | |
<LOQ–8.7 (soil amended with composted sludge) | [59] | |
Norfloxacin | 320–290 after 8 months of sludge application | [56] |
270–300 after 21 months of application | [56] | |
350 (2.5 cm depth) | [57] | |
50 (day 0 in a mesocosms experiment) | [58] | |
<LOQ–9.4 (soil amended with composted sludge) | [59] | |
Ofloxacin | 470 (day 0)–267 (day 994) | [58] |
5.3–8.6 (soil amended with composted sludge) | [59] | |
Triclosan | 1715 (day 0) | [58] |
833 | [60] | |
10,900 | [61] | |
14,000 | [62] | |
n.d.–16.7 | [63] | |
Triclocarban | 2715 | [58] |
4940 | [61] | |
8000 | [62] | |
Trimethoprim | n.d.–0.64 | [60] |
n.d.–60.1 | [63] | |
Azithromycin | 30 (day 0 in mesocosms experiment) | [58] |
Diclofenac | n.d.–1.16 | [63] |
Ibuprofen | n.d.–5.03 | [63] |
63.5 | [61] | |
750 | [62] | |
Carbamazepine | n.d. | [60] |
0.02–7.5 | [63] | |
6 (day 0 in a mesocosms experiment) | [58] | |
9 | [62] | |
183 | [61] | |
Fluoxetine | 10 (day 0 in a mesocosms experiment) | [58] |
Diphenhydramine | 40 (day 0 in a mesocosms experiment) | [58] |
n.d. | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolesta, W.; Głodniok, M.; Styszko, K. From Sewage Sludge to the Soil—Transfer of Pharmaceuticals: A Review. Int. J. Environ. Res. Public Health 2022, 19, 10246. https://doi.org/10.3390/ijerph191610246
Bolesta W, Głodniok M, Styszko K. From Sewage Sludge to the Soil—Transfer of Pharmaceuticals: A Review. International Journal of Environmental Research and Public Health. 2022; 19(16):10246. https://doi.org/10.3390/ijerph191610246
Chicago/Turabian StyleBolesta, Wioleta, Marcin Głodniok, and Katarzyna Styszko. 2022. "From Sewage Sludge to the Soil—Transfer of Pharmaceuticals: A Review" International Journal of Environmental Research and Public Health 19, no. 16: 10246. https://doi.org/10.3390/ijerph191610246
APA StyleBolesta, W., Głodniok, M., & Styszko, K. (2022). From Sewage Sludge to the Soil—Transfer of Pharmaceuticals: A Review. International Journal of Environmental Research and Public Health, 19(16), 10246. https://doi.org/10.3390/ijerph191610246