The Effect of Obesity on the Waist Circumference Cut-Point Used for the Diagnosis of the Metabolic Syndrome in African Women: Results from the SWEET Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Body Composition
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. The Effect of BMI on WC Cut-Points for MetS
3.3. The Relationship between Waist and Hip Circumference and Risk of MetS
3.4. Use of WHR to Diagnose MetS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gradidge, P.J.-L.; Crowther, N.J. Review: Metabolic Syndrome in Black South African Women. Ethn. Dis. 2017, 27, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Faijer-Westerink, H.J.; Kengne, A.P.; Meeks, K.A.C.; Agyemang, C. Prevalence of metabolic syndrome in sub-Saharan Africa: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 547–565. [Google Scholar] [CrossRef] [PubMed]
- Agyemang, C.; Boatemaa, S.; Frempong, G.A.; de-Graft Aikins, A. Obesity in Sub-Saharan Africa. In Metabolic Syndrome: A Comprehensive Textbook; Ahima, R.S., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–13. [Google Scholar]
- Ekoru, K.; Murphy, G.A.V.; Young, E.H.; Delisle, H.; Jerome, C.S.; Assah, F.; Longo-Mbenza, B.; Nzambi, J.P.D.; On’Kin, J.B.K.; Buntix, F.; et al. Deriving an optimal threshold of waist circumference for detecting cardiometabolic risk in sub-Saharan Africa. Int. J. Obes. 2017, 42, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Crowther, N.J.; Norris, S.A. The current waist circumference cut point used for the diagnosis of metabolic syndrome in sub–Saharan African women is not appropriate. PLoS ONE 2012, 7, e48883. [Google Scholar] [CrossRef]
- Fezeu, L.; Balkau, B.; Kengne, A.P.; Sobngwi, E.; Mbanya, J.C. Metabolic syndrome in a sub–Saharan African setting: Central obesity may be the key determinant. Atherosclerosis 2007, 193, 70–76. [Google Scholar] [CrossRef]
- Ntandou, G.; Delisle, H.; Agueh, V.; Fayomi, B. Abdominal obesity explains the positive rural-urban gradient in the prevalence of the metabolic syndrome in Benin, West Africa. Nutr. Res. 2009, 29, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Gradidge, P.J.; Norris, S.A.; Jaff, N.G.; Crowther, N.J. Metabolic and body composition risk factors associated with metabolic syndrome in a cohort of women with a high prevalence of cardiometabolic disease. PLoS ONE 2016, 11, e0162247. [Google Scholar]
- Lee, C.M.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol. 2008, 61, 646–653. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Chen, J.; Gallagher, D.; Albu, J.; Pi-Sunyer, X.; Lewis, C.E.; Grunfeld, C.; Heshka, S.; Heymsfield, S.B. Waist Circumference Correlates with Metabolic Syndrome Indicators Better Than Percentage Fat. Obesity 2006, 14, 727–736. [Google Scholar] [CrossRef]
- Motala, A.A.; Esterhuizen, T.; Pirie, F.J.; Omar, M.A.K. The prevalence of metabolic syndrome and determination of the optimal waist circumference cutoff points in a rural South African community. Diabetes Care 2011, 34, 1032–1037. [Google Scholar]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.e.a. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Peer, N.; Steyn, K.; Levitt, N. Differential obesity indices identify the metabolic syndrome in Black men and women in Cape Town: The CRIBSA study. J. Public Health 2016, 38, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Matsha, T.E.; Hassan, M.S.; Hon, G.M.; Soita, D.J.; Kengne, A.P.; Erasmus, R.T. Derivation and validation of a waist circumference optimal cutoff for diagnosing metabolic syndrome in a South African mixed ancestry population. Int. J. Cardiol. 2013, 168, 2954–2955. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.G.; Goedecke, J.H.; Ricks, M.; Evans, J.; Levitt, N.S.; Tulloch-Reid, M.K.; Sumner, A.E. The TG/HDL-C ratio does not predict insulin resistance in overweight women of African descent: A study of South African, African American and West African women. Ethn. Dis. 2011, 21, 490–494. [Google Scholar] [PubMed]
- Jennings, C.L.; Lambert, E.V.; Collins, M.; Levitt, N.S.; Goedecke, J.H. The atypical presentation of the metabolic syndrome components in black African women: The relationship with insulin resistance and the influence of regional adipose tissue distribution. Metabolism 2009, 58, 149–157. [Google Scholar] [CrossRef]
- Goedecke, J.H.; Levitt, N.S.; Lambert, E.V.; Utzschneider, K.M.; Faulenbach, M.V.; Dave, J.A.; West, S.; Victor, H.; Evans, J.; Olsson, T.; et al. Differential effects of abdominal adipose tissue distribution on insulin sensitivity in black and white South African women. Obesity 2009, 17, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Micklesfield, L.; Jennings, C.; Levitt, N.S.; Lambert, E.V.; Olsson, T.; Goedecke, J.H. Diagnostic ability of obesity measures to identify metabolic risk factors in South African women. Metab. Syndr. Relat. Disord. 2011, 9, 353–360. [Google Scholar] [CrossRef]
- Sumner, A.E.; Micklesfield, L.K.; Ricks, M.; Tambay, A.V.; Avila, N.A.; Thomas, F.; Lambert, E.V.; Levitt, N.S.; Evans, J.; Rotimi, C.N.; et al. Waist circumference, BMI, and visceral adipose tissue in white women and women of African descent. Obesity 2011, 19, 671–674. [Google Scholar] [CrossRef] [PubMed]
- González-Rivas, J.P.; Mechanick, J.I.; Iglesias-Fortes, R.; De-Oliveira-Gomes, D.; Silva, J.; Valencia, J.; Figueroa, E.; Duran, M.; Ugel, E.; Infante-García, M.M.; et al. Optimal waist circumference cutoff values to predict cardiometabolic alterations in a Venezuela national representative sample. The EVESCAM study. Arch. Cardiol. Mex. 2020, 91, 272–280. [Google Scholar] [CrossRef]
- Ko, K.P.; Oh, D.K.; Min, H.; Kim, C.S.; Park, J.K.; Kim, Y.; Kim, S.S. Prospective study of optimal obesity index cutoffs for predicting development of multiple metabolic risk factors: The Korean genome and epidemiology study. J. Epidemiol. 2012, 22, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lv, J.-H.; Lei, S.-F.; Chen, X.-D.; Liu, M.-Y.; Jian, W.-X.; Xu, H.; Tan, L.-J.; Deng, F.-Y.; Yang, Y.-J.; et al. Receiver-operating characteristic analyses of body mass index, waist circumference and waist-to-hip ratio for obesity: Screening in young adults in central south of China. Clin. Nutr. 2006, 25, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.S.; Schmidt-RioValle, J.; Rueda-Medina, B.; Correa-Rodríguez, M.; González-Jiménez, E. Waist circumference shows the highest predictive value for metabolic syndrome, and waist-to-hip ratio for its components, in Spanish adolescents. Nutr. Res. 2017, 45, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Manolopoulos, K.N.; Karpe, F.; Frayn, K.N. Gluteofemoral body fat as a determinant of metabolic health. Int. J. Obes. 2010, 34, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Goedecke, J.H.; Olsson, T. Pathogenesis of type 2 diabetes risk in black Africans: A South African perspective. J. Intern. Med. 2020, 288, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Christakoudi, S.; Tsilidis, K.K.; Muller, D.C.; Freisling, H.; Weiderpass, E.; Overvad, K.; Söderberg, S.; Häggström, C.; Pischon, T.; Dahm, C.C.; et al. A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: Results from a large European cohort. Sci. Rep. 2020, 10, 14541. [Google Scholar] [CrossRef] [PubMed]
Variables | BMI < 32.8 kg/m2 (N = 354) | BMI ≥ 32.8 kg/m2 (n = 348) | Combined (n = 702) |
---|---|---|---|
Anthropometric and cardiometabolic variables | |||
ABSI | 0.126 ± 0.01 | 0.129 ± 0.01 *** | 0.127 ± 0.01 |
BMI (kg/m2) | 27.7 ± 3.80 | 38.9 ± 5.44 *** | 33.4 ± 7.32 |
WC (cm) | 89.5 ± 10.2 | 109 ± 11.5 *** | 99.1 ± 14.5 |
WHR | 0.83 ± 0.08 | 0.85 ± 0.08 ** | 0.84 ± 0.07 |
WHtR | 0.57 ± 0.07 | 0.68 ± 0.06 *** | 0.62 ± 0.08 |
Arm + leg fat (kg) | 14.3 ± 3.76 | 21.7 ± 4.58 *** | 17.9 ± 5.57 |
Trunk fat (kg) | 10.9 ± 3.41 | 18.2 ± 3.69 *** | 14.5 ± 5.09 |
Sub-total body fat (kg) | 25.2 ± 6.46 | 39.8 ± 7.18 *** | 32.4 ± 10.0 |
Systolic BP (mmHg) | 129 (117, 145) | 134 (123, 147) ** | 131 (119, 146) |
Diastolic BP (mmHg) | 84.5 (77.0, 92.0) | 89.5 (83.0, 99.5) *** | 87.0 (79.0, 96.0) |
Fasting glucose (mmol/L) | 4.70 (4.40, 5.10) | 4.90 (4.50, 5.30) | 4.80 (4.50, 5.20) |
HDL (mmol/L) | 1.30 (1.00, 1.50) | 1.10 (0.90, 1.30) *** | 1.20 (1.00, 1.40) |
Triglycerides (mmol/L) | 1.00 (0.80, 1.40) | 1.20 (0.80, 1.50) | 1.10 (0.80, 1.50) |
Prevalence of MetS and component disorders | |||
WC ≥ 80 cm (%) | 81.2 (77.0, 85.3) | 99.7 (99.2, 100) *** | 89.7 (87.4, 91.9) |
Systolic BP ≥ 130 and/or diastolic BP ≥ 85 mmHg (%) | 55.7 (50.4, 60.9) | 73.8 (69.1, 78.4) *** | 65.5 (61.4, 68.6) |
Fasting glucose ≥ 5.6 mmol/L (%) | 13.7 (9.91, 17.4) | 18.9 (14.7, 23.2) | 16.5 (13.6, 19.4) |
HDL < 1.3 mmol/L (%) | 50.0 (44.6, 55.4) | 70.1 (65.1, 75.2) *** | 59.7 (56.0, 63.5) |
Triglycerides ≥ 1.7 mmol/L (%) | 13.8 (10.1, 17.6) | 16.9 (12.9, 21.0) | 15.4 (12.6, 18.1) |
MetS (with WC) (%) | 36.4 (31.2, 41.7) | 63.1 (57.8, 68.4) *** | 49.6 (45.7, 53.5) |
MetS (excluding WC) (%) | 9.00 (5.88, 12.1) | 19.1 (14.8, 23.4) *** | 14.0 (11.3, 16.7) |
Anthropometric Variables | Cut-Point | AUC | Sensitivity | Specificity |
---|---|---|---|---|
Women with BMI below median | ||||
ABSI | 0.127 | 0.74 (0.66, 0.82) * | 0.86 (0.82, 0.90) | 0.38 (0.34, 0.42) |
BMI (kg/m2) | 29.3 | 0.61 (0.51, 0.71) * | 0.66 (0.61, 0.71) | 0.44 (0.39, 0.49) |
WC (cm) | 93.5 | 0.74 (0.65, 0.82) * | 0.67 (0.60, 0.75) | 0.52 (0.45, 0.59) |
WHR | 0.85 | 0.72 (0.63, 0.82) * | 0.70 (0.67, 0.73) | 0.52 (0.49, 0.55) |
WHtR | 0.58 | 0.71 (0.61, 0.81) * | 0.69 (0.66, 0.72) | 0.52 (0.49, 0.55) |
Women with BMI above median | ||||
ABSI | 0.129 | 0.59 (0.52, 0.68) * | 0.66 (0.62, 0.70) | 0.45 (0.41, 0.49) |
BMI (kg/m2) | 35.9 | 0.54 (0.45, 0.62) * | 0.60 (0.55, 0.64) | 0.43 (0.39, 0.48) |
WC (cm) | 107 | 0.58 (0.50, 0.66) * | 0.53 (0.46, 0.61) | 0.53 (0.46, 0.60) |
WHR | 0.84 | 0.62 (0.54, 0.69) * | 0.59 (0.56, 0.63) | 0.52 (0.49, 0.55) |
WHtR | 0.66 | 0.56 (0.47, 0.64) * | 0.55 (0.51, 0.58) | 0.51 (0.48, 0.55) |
Anthropometric Variables | Cut-Point | AUC | Sensitivity | Specificity |
---|---|---|---|---|
Women with BMI below median | ||||
Subtotal fat (kg) | 25.9 | 0.59 (0.49, 0.68) * | 0.58 (0.54, 0.61) | 0.51 (0.48, 0.54) |
Arm and leg fat (kg) | 15.1 | 0.49 (0.39, 0.58) | 0.49 (0.45, 0.52) | 0.50 (0.47, 0.53) |
Trunk fat (kg) | 12.1 | 0.70 (0.60–0.79) * | 0.68 (0.64, 0.71) | 0.52 (0.49, 0.55) |
Women with BMI above median | ||||
Subtotal fat (kg) | 39.5 | 0.57 (0.49, 0.66) * | 0.56 (0.53, 0.59) | 0.51 (0.48, 0.54) |
Arm and leg fat (kg) | 11.0 | 0.37 (0.28, 0.46) | 0.40 (0.37, 0.43) | 0.47 (0.44, 0.51) |
Trunk fat (kg) | 13.8 | 0.52 (0.44, 0.60) * | 0.52 (0.48, 0.55) | 0.50 (0.47, 0.54) |
Dependent Variable | Independent Variables | Odds Ratio (95% CIs) | p-Value |
---|---|---|---|
Metabolic syndrome | Age | 1.07 (1.02, 1.12) | 0.003 |
Waist circumference | 1.07 (1.04, 1.10) | <0.0001 | |
Hip circumference | 0.97 (0.94, 0.99) | 0.019 |
Variables | No MetS (n = 322) | MetS by WC (n = 96) | MetS by WC & WHR (n = 219) |
---|---|---|---|
Age (years) | 48.5 ± 5.14 | 49.8 ± 5.13 | 50.2 ± 5.40 ** |
ABSI | 0.125 ± 0.01 | 0.123 ± 0.01 | 0.133 ± 0.01 ***,††† |
BMI (kg/m2) | 31.0 ± 6.93 | 36.0 ± 6.27 *** | 35.2 ± 6.72 *** |
WC (cm) | 93.6 ± 14.3 | 98.6 ± 9.09 *** | 106 ± 11.9 ***,††† |
Hip (cm) | 114 ± 14.4 | 125 ± 13.8 *** | 120 ± 12.8 ***,†† |
WHR | 0.82 ± 0.07 | 0.79 ± 0.04 *** | 0.89 ± 0.05 ***,††† |
Systolic BP (mmHg) | 121 (113, 136) | 136 (130, 145) *** | 140 (128, 154) *** |
Diastolic BP (mmHg) | 81.0 (75.0, 91.0) | 90.7 (85.7, 99.0) *** | 91.5 (86.5, 100) *** |
Fasting glucose (mmol/L) | 4.60 (4.30, 4.90) | 4.85 (4.50, 5.20) | 5.10 (4.70, 5.80) ***,††† |
HDL (mmol/L) | 1.40 (1.10, 1.60) | 1.10 (0.90, 1.20) *** | 1.00 (0.90, 1.10) *** |
Triglycerides (mmol/L) | 1.00 (0.70, 1.20) | 1.10 (0.80, 1.35) | 1.35 (1.00, 1.80) ***,††† |
HOMA-IR | 1.76 (1.21, 2.69) | 2.31 (1.47, 3.17) ** | 2.88 (1.97–4.82) ***,†† |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradidge, P.J.; Norris, S.A.; Crowther, N.J. The Effect of Obesity on the Waist Circumference Cut-Point Used for the Diagnosis of the Metabolic Syndrome in African Women: Results from the SWEET Study. Int. J. Environ. Res. Public Health 2022, 19, 10250. https://doi.org/10.3390/ijerph191610250
Gradidge PJ, Norris SA, Crowther NJ. The Effect of Obesity on the Waist Circumference Cut-Point Used for the Diagnosis of the Metabolic Syndrome in African Women: Results from the SWEET Study. International Journal of Environmental Research and Public Health. 2022; 19(16):10250. https://doi.org/10.3390/ijerph191610250
Chicago/Turabian StyleGradidge, Philippe J., Shane A. Norris, and Nigel J. Crowther. 2022. "The Effect of Obesity on the Waist Circumference Cut-Point Used for the Diagnosis of the Metabolic Syndrome in African Women: Results from the SWEET Study" International Journal of Environmental Research and Public Health 19, no. 16: 10250. https://doi.org/10.3390/ijerph191610250
APA StyleGradidge, P. J., Norris, S. A., & Crowther, N. J. (2022). The Effect of Obesity on the Waist Circumference Cut-Point Used for the Diagnosis of the Metabolic Syndrome in African Women: Results from the SWEET Study. International Journal of Environmental Research and Public Health, 19(16), 10250. https://doi.org/10.3390/ijerph191610250