Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measured Toxicity Data Collection and Processing
2.2. ICE Data Set
2.3. Data Analysis
3. Results and Discussion
3.1. Estimated Toxicity Using Web-ICE
3.2. ICE-and Measure-Based SSD
3.3. Aquatic Life Criteria Derivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ammendolia, J.; Saturno, J.; Brooks, A.L.; Jacobs, S.; Jambeck, J. An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ. Pollut. 2020, 269, 116160. [Google Scholar] [CrossRef] [PubMed]
- Briain, O.; Mendes, A.; Mccarron, S.; Healy, M.G.; Morrison, L. The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment. Water Res. 2020, 182, 116021. [Google Scholar] [CrossRef]
- Canning-Clode, J.; Sepúlveda, P.; Almeida, S.; Monteiro, J.G. Will COVID-19 Containment and Treatment Measures Drive Shifts in Marine Litter Pollution? Front. Mar. Sci. 2020, 7, 691. [Google Scholar] [CrossRef]
- Cecchi, T. Analysis of volatiles organic compounds in Venice lagoon water reveals COVID 19 lockdown impact on microplastics and mass tourism related pollutants. Sci. Total Environ. 2021, 783, 146951. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Liu, Q.; Zhao, Q.; Xiong, X.; Wu, C. Used disposable face masks are significant sources of microplastics to environment. Environ. Pollut. 2021, 285, 117485. [Google Scholar] [CrossRef]
- De-la-Torre, G.E.; Aragaw, T.A. What we need to know about PPE associated with the COVID-19 pandemic in the marine environment. Mar. Pollut. Bull. 2021, 163, 111879. [Google Scholar] [CrossRef]
- Expósito, N.; Rovira, J.; Sierra, J.; Folch, J.; Schuhmacher, M. Microplastics levels, size, morphology and composition in marine water, sediments and sand beaches. Case study of Tarragona coast (western Mediterranean). Sci. Total Environ. 2021, 786, 147453. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Akhdhar, A.; Elwakeel, K.Z. Microplastics prevalence, interactions, and remediation in the aquatic environment: A critical review. J. Environ. Chem. Eng. 2021, 5, 106224. [Google Scholar] [CrossRef]
- Han, J.; He, S. Need for assessing the inhalation of micro(nano)plastic debris shed from masks, respirators, and home-made face coverings during the COVID-19 pandemic. Environ. Pollut. 2021, 268, 115728. [Google Scholar] [CrossRef]
- Ho, W.K.; Leung, S.Y. The Crucial Role of Heavy Metals on the Interaction of Engineered Nanoparticles with Polystyrene Microplastics. Water Res. 2021, 201, 117317. [Google Scholar] [CrossRef] [PubMed]
- Krv, A.; Hbs, B.; Vpr, B.; Bs, A.; Jba, C.; Bkda, B.; Sg, B. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 2021, 750, 141514. [Google Scholar]
- Liang, H.; Ji, Y.; Ge, W.; Wu, J.; Song, N.; Yin, Z.; Chai, C. Release kinetics of microplastics from disposable face masks into the aqueous environment. Sci. Total Environ. 2022, 816, 151650. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Z.; Yan, Z.; Yi, X. Derivation of water quality criteria of phenanthrene using interspecies correlation estimation models for aquatic life in China. Environ. Sci. Pollut. Res. Int. 2015, 22, 9457–9463. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, S.; Vivian, D.; Barron, M. Web-Based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual; Version 3.1; Office of Research and Development, US Environmental Protection Agency: Gulf Breeze, FL, USA, 2010.
- Wang, X.; Fan, B.; Fan, M.; Belanger, S.; Li, J.; Chen, J.; Gao, X.; Liu, Z. Development and use of interspecies correlation estimation models in China for potential application in water quality criteria. Chemosphere 2020, 240, 124848. [Google Scholar] [CrossRef] [PubMed]
- Dyer, S.D.; Versteeg, D.J.; Belanger, S.E.; Chaney, J.G.; Mayer, F.L. Interspecies correlation estimates predict protective environmental concentrations. Environ. Sci. Technol. 2006, 40, 3102–3111. [Google Scholar] [CrossRef]
- Raimondo, S.; Mineau, P.; Barron, M. Estimation of chemical toxicity to wildlife species using interspecies correlation models. Environ. Sci. Technol. 2007, 41, 5888–5894. [Google Scholar] [CrossRef]
- Dyer, S.D.; Versteeg, D.J.; Belanger, S.E.; Chaney, J.G.; Raimondo, S.; Barron, M.G. Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria. Environ. Sci. Technol. 2008, 42, 3076–3083. [Google Scholar] [CrossRef]
- Golsteijn, L.; Hendriks, H.W.; van Zelm, R.; Ragas, A.M.; Huijbregts, M.A. Do interspecies correlation estimations increase the reliability of toxicity estimates for wildlife? Ecotoxicol. Environ. Saf. 2012, 80, 238–243. [Google Scholar] [CrossRef]
- ASTM. Chronic toxicity of the bromoxynil formulation Buctril to Daphnia magna exposed continuously and intermittently. Arch. Environ. Contam. Toxicol. 1993, 25, 152–159. [Google Scholar]
- USEPA. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses (PB 85-227049); Office of Research and Development, Environmental Research Laboratories, US Environmental Protection Agency: Duluth, MN, USA; Narragansett, RI, USA; Corvallis, OR, USA, 1985.
- Md Refat Jahan, A.; De la Torre, B.; Pizzaro-Ortega, B.; Dioses-Salinas, B.; Al-Nahian, C. Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in Cox’s Bazar, the longest natural beach in the world. Mar. Pollut. Bull. 2021, 169, 112497. [Google Scholar]
- Prata, J.C.; Silva, A.; Walker, T.R.; Duarte, A.C.; Santos, T.R. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zeng, Z.; Song, B.; Yi, H.; Hu, T.; Zhang, Y.; Zeng, G.; Xiao, R. Neglected microplastics pollution in global COVID-19: Disposable surgical masks. Sci. Total Environ. 2021, 790, 148130. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Pérez-Guevara, F.; Kutralam-Muniasamy, G. Wet wipes contribution to microfiber contamination under COVID-19 era: An important but overlooked problem. Environ. Chall. 2021, 5, 100267. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Z.; Zhu, J.; Shi, J.; Shi, H. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process. Environ. Pollut. 2021, 270, 116278. [Google Scholar] [CrossRef]
- Sullivan, G.L.; Delgado-Gallardo, J.; Watson, T.M.; Sarp, S. An investigation into the leaching of micro and nano particles and chemical pollutants from disposal face masks—Linked to the COVID-19 pandemic. Water Res. 2021, 196, 117033. [Google Scholar] [CrossRef]
- Tagorti, G.; Kaya, B. Genotoxic effect of microplastics and COVID-19: The hidden threat. Chemosphere 2022, 286, 131898. [Google Scholar] [CrossRef]
- Thiele, C.J.; Hudson, M. Uncertainty about the risks associated with microplastics among lay and topic-experienced respondents. Sci. Rep. 2021, 11, 7155. [Google Scholar] [CrossRef]
- Wang, Z.; An, C.; Chen, X.; Lee, K.; Feng, Q. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. J. Hazard. Mater. 2021, 417, 126036. [Google Scholar] [CrossRef]
- Eriksson, A.N.M.; Rigaud, C.; Krasnov, A.; Wincent, E.; Vehniäinen, E.-R. Exposure to retene, fluoranthene, and their binary mixture causes distinct transcriptomic and apical outcomes in rainbow trout (Oncorhynchus mykiss) yolk sac alevins. Aquat. Toxicol. 2022, 244, 106083. [Google Scholar] [CrossRef]
- Baker, J.E.; Eisenreich, S.J.; Eadie, B.J. Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior. Environ. Sci. Technol. 1991, 25, 500–509. [Google Scholar] [CrossRef]
- Cheung, K.C.; Leung, H.M.; Kong, K.Y.; Wong, M.H. Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere 2007, 66, 460–468. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, L.; Tao, Y. Toxicity assessment of environmental pollutant phenanthrene in clam Venerupis philippinarum using oxidative stress biomarkers. Environ. Toxicol. Pharmacol. 2014, 37, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, C.; Zhao, Y. Effects of surfactants on the fractionation, vermiaccumulation, and removal of fluoranthene by earthworms in soil. Chemosphere 2020, 250, 126332. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Landrum, P.F.; Koh, C.-H. Toxicokinetics and time-dependent PAH toxicity in the amphipod Hyalella azteca. Environ. Sci. Technol. 2002, 36, 3124–3130. [Google Scholar] [CrossRef]
- Macıas-Zamora, J.V.; Mendoza-Vega, E.; Villaescusa-Celaya, J.A. PAHs composition of surface marine sediments: A comparison to potential local sources in Todos Santos Bay, BC, Mexico. Chemosphere 2002, 46, 459–468. [Google Scholar] [CrossRef]
- Rostami, M.; Rostami, S. Effect of salicylic acid and mycorrhizal symbiosis on improvement of fluoranthene phytoremediation using tall fescue (Festuca arundinacea Schreb). Chemosphere 2019, 232, 70–75. [Google Scholar] [CrossRef]
- Callen, M.S.; Lopez, J.M.; Iturmendi, A.; Mastral, A.M. Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environ. Pollut. 2013, 183, 166–174. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Wang, J.S. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Sci. Total Environ. 2012, 414, 293–300. [Google Scholar] [CrossRef]
- Meier, J.R.; Snyder, S.; Sigler, V.; Altfater, D.; Gray, M.; Batin, B.; Baumann, P.; Gordon, D.; Wernsing, P.; Lazorchak, J. An integrated assessment of sediment remediation in a midwestern U.S. stream using sediment chemistry, water quality, bioassessment, and fish biomarkers. Environ. Toxicol. Chem. 2013, 32, 653–661. [Google Scholar] [CrossRef]
- Maletic, S.P.; Beljin, J.M.; Roncevic, S.D.; Grgic, M.G.; Dalmacija, B.D. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: Sources, fate, bioavailability and remediation techniques. J. Hazard Mater. 2019, 365, 467–482. [Google Scholar] [CrossRef] [PubMed]
Phylum | Family | Species | LC50/EC50 (μg/L) | Reference |
---|---|---|---|---|
Arthropoda | Daphnidae | Daphnia magna | 7.70 × 102 | [23] |
Ceriodaphnia dubia | 9.58 × 102 | [24] | ||
Thamnocephalidae | Thamnocephalus platyurus | 5.20 × 103 | [25] | |
Harpacticidae | Tigriopus japonicus | 2.15 × 103 | [26] | |
Hyalellidae | Hyalella azteca | 2.18 × 105 | [27] | |
Chordata | Salmonidae | Oncorhynchus mykiss | 6.03 × 105 | [28] |
Gobiidae | Pomatoschistus microps | 3.05 × 105 | [29] | |
Chlorophyta | Chlorodendraceae | Pseudokirchneriella subcapitata | 5.80 × 102 | [30] |
Tetraselmis chuii | 1.45 × 102 | [31] | ||
Proteobacteria | Vibrionaceae | Vibrio fischeri | 1.00 × 106 | [32] |
Echinodermata | Parechinidae | Paracentrotus lividus | 2.61 × 103 | [33] |
Surrogate Species | Predicted Species | Estimated Toxicity (mg/L) | Cross-Validation Success (%) | MSE | R2 | Taxonomic Distance |
---|---|---|---|---|---|---|
Daphnia magna | ||||||
Thamnocephalus platyurus | 724.26 | 91 | 0.05 | 0.98 | 4 | |
Daphnia pulex | 628.65 | 90 | 0.12 | 0.97 | 1 | |
Simocephalus serrulatus | 755.41 | 87 | 0.21 | 0.88 | 2 | |
Utterbackia imbecillis | 580.28 | 100 | 0.11 | 0.96 | 4 | |
Amblema plicata | 279.27 | 90 | 0.18 | 0.94 | 4 | |
Megalonaias nervosa | 437.8 | 91 | 0.16 | 0.96 | 3 | |
Margaritifera falcata | 787.86 | 90 | 0.14 | 0.95 | 3 | |
Oncorhynchus mykiss | ||||||
Salmo salar | 61,347.21 | 93 | 0.12 | 0.95 | 2 | |
Salvelinus fontinalis | 60,703.33 | 92 | 0.11 | 0.94 | 2 | |
Salmo trutta | 61,269.36 | 96 | 0.1 | 0.95 | 2 | |
Oncorhynchus tshawytscha | 60,424.03 | 94 | 0.07 | 0.96 | 1 | |
Oncorhynchus kisutch | 79,193.94 | 100 | 0.04 | 0.98 | 1 | |
Oncorhynchus clarkii | 44,376.05 | 95 | 0.09 | 0.94 | 1 | |
Lepomis cyanellus | 85,160.74 | 100 | 0.13 | 0.94 | 4 | |
Salvelinus namaycush | 28,786.62 | 96 | 0.08 | 0.93 | 2 | |
Perca flavescens | 50,142.3 | 88 | 0.14 | 0.94 | 4 | |
Hyalella azteca | ||||||
Gammarus pseudolimnaeus | 2161.17 | 100 | 0.03 | 0.99 | 3 | |
Pimephales promelas | 3457.14 | 97 | 0.22 | 0.85 | 4 | |
Americamysis bahia | 350.71 | 86 | 0.20 | 0.86 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhao, X.; Gao, L.; Li, Y.; Wang, D. Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms. Int. J. Environ. Res. Public Health 2022, 19, 10307. https://doi.org/10.3390/ijerph191610307
Wu J, Zhao X, Gao L, Li Y, Wang D. Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms. International Journal of Environmental Research and Public Health. 2022; 19(16):10307. https://doi.org/10.3390/ijerph191610307
Chicago/Turabian StyleWu, Jiangyue, Xiaohui Zhao, Lin Gao, Yan Li, and Dan Wang. 2022. "Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms" International Journal of Environmental Research and Public Health 19, no. 16: 10307. https://doi.org/10.3390/ijerph191610307
APA StyleWu, J., Zhao, X., Gao, L., Li, Y., & Wang, D. (2022). Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms. International Journal of Environmental Research and Public Health, 19(16), 10307. https://doi.org/10.3390/ijerph191610307