Effects of Acute High-Intensity Interval Exercise and High-Intensity Continuous Exercise on Inhibitory Function of Overweight and Obese Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. The Stroop Task
2.3. Experimental Procedure
2.4. Statistical Analysis
3. Results
Behavior Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhao, L.; Gao, L.; Pan, A.; Xue, H. Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 446–461. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, S.; Peirano, P.; Peigneux, P.; Lozoff, B.; Algarin, C. Inhibitory control in otherwise healthy overweight 10-year-old children. Int. J. Obes. 2015, 39, 1230–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamijo, K.; Pontifex, M.B.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The negative association of childhood obesity to cognitive control of action monitoring. Cereb. Cortex 2012, 24, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Loeber, S.; Grosshans, M.; Korucuoglu, O.; Vollmert, C.; Vollstädt-Klein, S.; Schneider, S.; Wiers, R.W.; Mann, K.; Kiefer, F. Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls. Int. J. Obes. 2012, 36, 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Reinert, K.R.S.; Po’e, E.K.; Barkin, S.L. The relationship between executive function and obesity in children and adolescents: A systematicliterature review. J. Obes. 2013, 2013, 820956. [Google Scholar] [CrossRef]
- Yang, Y.; Shields, G.S.; Guo, C.; Liu, Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci. Biobehav. Rev. 2018, 84, 225–244. [Google Scholar] [CrossRef]
- Ayine, P.; Selvaraju, V.; Venkatapoorna, C.M.K.; Bao, Y.; Gaillard, P.; Geetha, T. Eating behaviors in relation to child weight status and maternal education. Children 2021, 8, 32. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [Green Version]
- McMorris, T. History of research into the acute exercise–cognition interaction: A cognitive psychology approach. In Exercise-Cognition Interaction: Neuroscience Perspectives; Elsevier Academic Press: London, UK, 2016; pp. 1–28. [Google Scholar] [CrossRef]
- Etnier, J.L.; Chang, Y.K. The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. J. Sport Exerc. Psychol. 2009, 31, 469–483. [Google Scholar] [CrossRef]
- Chu, C.H.; Alderman, B.L.; Wei, G.X.; Chang, Y.K. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. J. Sport Health Sci. 2015, 4, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.S.; Huang, C.J.; Wu, C.T.; Chang, Y.K.; Hung, T.M. Acute exercise facilitates the N450 inhibition marker and P3 attention marker during Stroop test in young and older adults. J. Clin. Med. 2018, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Levin, O.; Netz, Y.; Ziv, G. Behavioral and neurophysiological aspects of inhibition—The effects of acute cardiovascular exercise. J. Clin. Med. 2021, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.G.; Yan, J.; Yin, H.C.; Pan, C.Y.; Chang, Y.K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol. Sport Exerc. 2014, 15, 627–636. [Google Scholar] [CrossRef]
- Drollette, E.S.; Scudder, M.R.; Raine, L.B.; Moore, R.D.; Saliba, B.J.; Pontifex, M.B.; Hillman, C.H. Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Dev. Cogn. Neurosci. 2014, 7, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qian, Y.; Li, Z.; Paolo Marcello, C.; Cai, Y. Effects of Acute and Chronic Exercises on Executive Function in Children and Adolescents: A Systemic Review and Meta-Analysis. Front. Psychol. 2020, 11, 554915. [Google Scholar] [CrossRef]
- Chang, Y.K.; Chu, C.H.; Chen, F.T.; Hung, T.M.; Etnier, J.L. Combined effects of physical activity and obesity on cognitive function: Independent, overlapping, moderator, and mediator models. Sports Med. 2017, 47, 449–468. [Google Scholar] [CrossRef] [Green Version]
- Logan, N.E.; Raine, L.B.; Drollette, E.S.; Castelli, D.M.; Khan, N.A.; Kramer, A.F.; Hillman, C.H. The differential relationship of an afterschool physical activity intervention on brain function and cognition in children with obesity and their normal weight peers. Pediatr. Obes. 2021, 16, e12708. [Google Scholar] [CrossRef]
- Xie, C.; Wang, X.; Zhou, C.; Xu, C.; Chang, Y.K. Exercise and dietary program-induced weight reduction is associated with cognitive function among obese adolescents: A longitudinal study. PeerJ 2017, 5, e3286. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Migueles, J.H.; Solis-Urra, P.; Verdejo-Román, J.; Rodriguez-Ayllon, M.; Molina-Garcia, P.; Ruiz, J.R. Effects of exercise on brain health outcomes in children with overweight/obesity: The ActiveBrains randomized controlled trial. medRxiv 2022, 1–28. [Google Scholar] [CrossRef]
- Peven, J.C.; Jakicic, J.M.; Rogers, R.J.; Lesnovskaya, A.; Erickson, K.I.; Kang, C.; Zhou, X.; Porter, A.; Donofry, S.D.; Watt, J.C. The effects of a 12-month weight loss intervention on cognitive outcomes in adults with overweight and obesity. Nutrients 2020, 12, 2988. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Alderman, B.L.; Meng, F.; Ai, J.; Chang, Y.K.; Li, A. Acute high-intensity interval exercise improves inhibitory control among young adult males with obesity. Front. Psychol. 2020, 11, 1291. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.Y.; Chen, F.T.; Hsieh, S.S.; Kao, S.C.; Chen, A.G.; Hung, T.M.; Chang, Y.K. The effect of acute high-intensity interval training on executive function: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 3593. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Chueh, T.Y.; Huang, C.J.; Kao, S.C.; Hillman, C.H.; Chang, Y.K.; Hung, T.M. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J. Sport Sci. 2021, 39, 10–22. [Google Scholar] [CrossRef]
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-intensity interval training interventions in children and adolescents: A systematic review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Boutcher, S.H. High-intensity intermittent exercise and fat loss. Int. J. Obes. 2011, 2011, 868305. [Google Scholar] [CrossRef] [Green Version]
- Drigny, J.; Gremeaux, V.; Dupuy, O.; Gayda, M.; Bherer, L.; Juneau, M.; Nigam, A. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: A pilot study. J. Rehabil. Med. 2014, 46, 1050–1054. [Google Scholar] [CrossRef] [Green Version]
- Quintero, A.P.; Bonilla-Vargas, K.J.; Correa-Bautista, J.E.; Domínguez-Sanchéz, M.A.; Triana-Reina, H.R.; Velasco-Orjuela, G.P.; García-Hermoso, A.; Villa-González, E.; Esteban-Cornejo, I.; Correa-Rodríguez, M.; et al. Acute effect of three different exercise training modalities on executive function in overweight inactive men: A secondary analysis of the BrainFit study. Physiol. Behav. 2018, 197, 22–28. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Kao, S.C.; Westfall, D.R.; Soneson, J.; Gurd, B.; Hillman, C.H. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology 2017, 54, 1335–1345. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2019, 320, 1240. [Google Scholar] [CrossRef] [Green Version]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. Gen. 1992, 121, 15–23. [Google Scholar] [CrossRef]
- Pachana, N.A.; Thompson, L.W.; Marcopulos, B.A.; Yoash-Gantz, R. California Older Adult Stroop Test (COAST). Clin. Gerontol. 2004, 27, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Siegrist, M. Test-Retest Reliability of Different Versions of the Stroop Test. J. Psychol. 1997, 131, 299–306. [Google Scholar] [CrossRef]
- Chang, Y.K.; Etnier, J.L. Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychol. Sport Exerc. 2009, 10, 19–24. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Etnier, J.L. Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J. Sport Exerc. Psychol. 2009, 31, 640–656. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.M.; Duncan, M.J.; Clark, C.C.; Eyre, E.L. The acute effects of continuous and intermittent cycling on executive function in children. Acta Psychol. 2021, 218, 103363. [Google Scholar] [CrossRef]
- Ichinose, Y.; Morishita, S.; Suzuki, R.; Endo, G.; Tsubaki, A. Comparison of the Effects of Continuous and Intermittent Exercise on Cerebral Oxygenation and Cognitive Function. In Oxygen Transport to Tissue XLI; Springer International Publishing: Cham, Switzerland, 2020; pp. 209–214. [Google Scholar] [CrossRef]
- Hyodo, K.; Suwabe, K.; Yamaguchi, D.; Soya, H.; Arao, T. Comparison between the effects of continuous and intermittent light-intensity aerobic dance exercise on mood and executive functions in older adults. Front. Aging Neurosci. 2021, 13, 723243. [Google Scholar] [CrossRef]
- Fox, S., 3rd; Haskell, W. Physical activity and the prevention of coronary heart disease. Bull. N. Y. Acad. Med. 1968, 44, 950. [Google Scholar] [CrossRef] [Green Version]
- Kao, S.C.; Drollette, E.S.; Ritondale, J.P.; Khan, N.; Hillman, C.H. The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychol. Sport Exerc. 2018, 38, 90–99. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Suga, T.; Takenaka, S.; Tanaka, D.; Takeuchi, T.; Hamaoka, T.; Isaka, T.; Hashimoto, T. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol. Behav. 2016, 155, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, F.; Chiu, M.M.; Siu, A.Y.S. Effects of high-intensity interval exercise and moderate-intensity continuous exercise on executive function of healthy young males. Physiol. Behav. 2021, 239, 113505. [Google Scholar] [CrossRef] [PubMed]
- Lambrick, D.; Stoner, L.; Grigg, R.; Faulkner, J. Effects of continuous and intermittent exercise on executive function in children aged 8–10 years. Psychophysiology 2016, 53, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Etnier, J.L.; Labban, J.D.; Piepmeier, A.; Davis, M.E.; Henning, D.A. Effects of an acute bout of exercise on memory in 6th grade children. Pediatr. Exerc. Sci. 2014, 26, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Moreau, D.; Chou, E. The acute effect of high-intensity exercise on executive function: A meta-analysis. Perspect. Psychol. Sci. 2019, 14, 734–764. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.K.; Tsai, C.L.; Huang, C.C.; Wang, C.C.; Chu, I.H. Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? J. Sci. Med. Sport 2014, 17, 51–55. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Harnishfeger, K.K.; Bjorklund, D.F. The ontogeny of inhibition mechanisms: A renewed approach to cognitive development. In Emerging Themes in Cognitive Development; Springer: New York, NY, USA, 1993; pp. 28–49. [Google Scholar]
- Chang, Y.K.; Ku, P.W.; Tomporowski, P.D.; Chen, F.T.; Huang, C.C. Effects of acute resistance exercise on late-middle-age adults’ goal planning. Med. Sci. Sport Exerc. 2012, 44, 1773–1779. [Google Scholar] [CrossRef]
- Ludyga, S.; Pühse, U.; Lucchi, S.; Marti, J.; Gerber, M. Immediate and sustained effects of intermittent exercise on inhibitory control and task-related heart rate variability in adolescents. J. Sci. Med. Sport 2019, 22, 96–100. [Google Scholar] [CrossRef]
Variable | HIIE Group (n = 24) | HICE Group (n = 24) | CON Group (n = 24) |
---|---|---|---|
Gender (Male) | 19 | 19 | 19 |
Age (years) | 11.58 ± 1.14 | 11.71 ± 1.16 | 11.38 ± 0.77 |
Height (m) | 1.46 ± 0.06 | 1.45 ± 0.08 | 1.45 ± 0.05 |
Weight (kg) | 55.24 ± 6.29 | 55.90 ± 8.32 | 54.21 ± 4.65 |
BMI (kg/m2) | 25.88 ± 1.12 | 26.31 ± 1.21 | 25.88 ± 0.73 |
Family income (yuan) | 42.68 ± 8.73 | 42.68 ± 10.06 | 45.51 ± 8.64 |
Educational level (years) | 9.58 ± 1.14 | 9.71 ± 1.16 | 9.38 ± 0.77 |
Variable | HIIE Group | HICE Group | CON Group | |
---|---|---|---|---|
Congruent reaction time (s) | Pre-test | 25.60 ± 7.06 | 24.33 ± 5.71 | 24.35 ± 5.13 |
Post-test | 24.52 ± 7.17 | 22.29 ± 5.95 | 23.91 ± 4.97 | |
Δ | 1.08 ± 1.27 | 2.04 ± 2.33 | 0.44 ± 1.14 | |
Neutral reaction time (s) | Pre-test | 33.53 ± 11.51 | 30.50 ± 8.62 | 32.33 ± 8.08 |
Post-test | 31.34 ± 10.37 | 27.96 ± 7.61 | 31.89 ± 7.44 | |
Δ | 2.19 ± 2.39 | 2.54 ± 2.50 | 0.44 ± 1.19 | |
Incongruent reaction time (s) | Pre-test | 40.58 ± 9.05 | 40.17 ± 7.63 | 39.57 ± 6.03 |
Post-test | 38.78 ± 8.68 | 39.18 ± 7.71 | 39.17 ± 5.70 | |
Δ | 1.80 ± 1.76 | 0.98 ± 1.15 | 0.40 ± 1.09 | |
Congruent number of errors (n) | Pre-test | 1.04 ± 0.91 | 0.79 ± 0.78 | 0.79 ± 0.78 |
Post-test | 0.67 ± 0.72 | 0.58 ± 0.78 | 0.75 ± 0.68 | |
Δ | 0.38 ± 0.58 | 0.21 ± 0.59 | 0.04 ± 0.36 | |
Neutral number of errors (n) | Pre-test | 0.04 ± 0.36 | 0.83 ± 0.92 | 0.87 ± 1.03 |
Post-test | 0.96 ± 0.86 | 0.67 ± 0.76 | 0.88 ± 0.68 | |
Δ | 0.21 ± 0.51 | 0.17 ± 0.56 | 0.00 ± 0.66 | |
Incongruent number of errors (n) | Pre-test | 1.13 ± 1.04 | 1.04 ± 0.91 | 1.21 ± 0.88 |
Post-test | 0.88 ± 0.74 | 0.88 ± 0.68 | 1.13 ± 0.85 | |
Δ | 0.25 ± 0.61 | 0.17 ± 0.56 | 0.08 ± 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, D.; Liu, S.; Ren, F.-F.; Chi, L.; Xie, C. Effects of Acute High-Intensity Interval Exercise and High-Intensity Continuous Exercise on Inhibitory Function of Overweight and Obese Children. Int. J. Environ. Res. Public Health 2022, 19, 10401. https://doi.org/10.3390/ijerph191610401
Zhang L, Wang D, Liu S, Ren F-F, Chi L, Xie C. Effects of Acute High-Intensity Interval Exercise and High-Intensity Continuous Exercise on Inhibitory Function of Overweight and Obese Children. International Journal of Environmental Research and Public Health. 2022; 19(16):10401. https://doi.org/10.3390/ijerph191610401
Chicago/Turabian StyleZhang, Ligong, Dongshi Wang, Siwen Liu, Fei-Fei Ren, Lin Chi, and Chun Xie. 2022. "Effects of Acute High-Intensity Interval Exercise and High-Intensity Continuous Exercise on Inhibitory Function of Overweight and Obese Children" International Journal of Environmental Research and Public Health 19, no. 16: 10401. https://doi.org/10.3390/ijerph191610401
APA StyleZhang, L., Wang, D., Liu, S., Ren, F. -F., Chi, L., & Xie, C. (2022). Effects of Acute High-Intensity Interval Exercise and High-Intensity Continuous Exercise on Inhibitory Function of Overweight and Obese Children. International Journal of Environmental Research and Public Health, 19(16), 10401. https://doi.org/10.3390/ijerph191610401