Manual and Mechanical Induced Peri-Resuscitation Injuries—Post-Mortem and Clinical Findings †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Literature Review
2.1.2. Local Retrospective Multicenter Evaluation
2.1.3. Evolution of Quality Indicators
2.2. Data Analysis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jude, R.J.; Kouwenhoven, W.B.; Knickerbocker, G.G. Cardiac arrest. Report of application of external cardiac massage on 118 patients. JAMA 1961, 178, 1063–1070. [Google Scholar] [CrossRef]
- Kouwenhoven, B.W.; Jude, J.R.; Knickerbocker, G.G. Closed-chest cardiac massage. JAMA 1960, 173, 1064–1067. [Google Scholar] [CrossRef] [Green Version]
- Ristagno, G.; Tang, W.; Weil, M.H. Cardiopulmonary resuscitation: From the beginning to the present day. Crit. Care Clin. 2009, 25, 133–151. [Google Scholar] [CrossRef]
- Ahern, R.M.; Lozano, R.; Naghavi, M.; Foreman, K.; Gakidou, E.; Murray, C.J.I. Improving the public health utility of global cardiovascular mortality data: The rise of ischemic heart disease. Popul. Health Metr. 2011, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.P.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef]
- Fischer, M.W.J.; Gräsner, J.T.; Seewald, S.; Brenner, S.; Jantzen, T.; Bein, B.; Bohn, A. Jahresbericht des Deutschen Reanimationsregisters–Außerklinische Reanimation 2019. Anästhesiologie Intensivmed. 2020, 61, V89–V93. [Google Scholar]
- Seewald, S.B.S.; Fischer, M.; Gräsner, J.T.; Wnent, J.; Jantzen, T.; Ristau, P.; Bein, B. Jahresbericht des Deutschen Reanimationsregister—Innerklinische Reanimation 2019. Anästhesiologie Intensivmed. 2020, 61, V100–V102. [Google Scholar]
- Soar, J.; Böttiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djärv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef]
- Panchal, A.R.; Bartos, J.A.; Cabanas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142 (Suppl. S2), S366–S468. [Google Scholar] [CrossRef]
- German Resuscitation Council—Deutscher Rat Für Wiederbelebung. 2022. Available online: https://www.grc-org.de (accessed on 21 April 2022).
- Meaney, P.A.; Bobrow, B.J.; Mancini, M.E.; Christenson, J.; de Caen, A.R.; Bhanji, F.; Abella, B.S.; Kleinman, M.E.; Edelson, D.P.; Berg, R.A.; et al. Cardiopulmonary resuscitation quality: [corrected] Improving cardiac resuscitation outcomes both inside and outside the hospital: A consensus statement from the American Heart Association. Circulation 2013, 128, 417–435. [Google Scholar] [CrossRef]
- Ralston, S.H.; Voorhees, W.D.; Babbs, C.F. Intrapulmonary epinephrine during prolonged cardiopulmonary resuscitation: Improved regional blood flow and resuscitation in dogs. Ann. Emerg. Med. 1984, 13, 79–86. [Google Scholar] [CrossRef]
- Michael, J.R.; Guerci, A.D.; Koehler, R.C.; Shi, A.Y.; Tsitlik, J.; Chandra, N.; Niedermeyer, E.; Rogers, M.C.; Traystman, R.J.; Weisfeldt, M.L. Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation 1984, 69, 822–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halperin, H.R.; Tsitlik, J.E.; Guerci, A.D.; Mellits, E.D.; Levin, H.R.; Shi, A.Y.; Chandra, N.; Weisfeldt, M.L. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation 1986, 73, 539–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubertsson, S.; Karlsten, R. Increased cortical cerebral blood flow with LUCAS: A new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation 2005, 65, 357–363. [Google Scholar] [CrossRef]
- Kleinman, M.E.; Brennan, E.E.; Goldberger, Z.D.; Swor, R.A.; Terry, M.; Bobrow, B.J.; Gazmuri, R.J.; Travers, A.H.; Rea, T. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132 (Suppl. S2), S414–S435. [Google Scholar] [CrossRef] [Green Version]
- Zöllner, K.; Sellmann, T.; Wetzchewald, D.; Schwager, H.; Cleff, C.; Thal, S.C.; Marsch, S. U SO CARE-The Impact of Cardiac Ultrasound during Cardiopulmonary Resuscitation: A Prospective Randomized Simulator-Based Trial. J. Clin. Med. 2021, 10, 5218. [Google Scholar] [CrossRef]
- Vogt, L.; Sellmann, T.; Wetzchewald, D.; Schwager, H.; Russo, S.; Marsch, S. Effects of Bag Mask Ventilation and Advanced Airway Management on Adherence to Ventilation Recommendations and Chest Compression Fraction: A Prospective Randomized Simulator-Based Trial. J. Clin. Med. 2020, 9, 2045. [Google Scholar] [CrossRef]
- Rifai, S.; Sellmann, T.; Wetchewald, D.; Schwager, H.; Tschan, F.; Russo, S.G.; Marsch, S. Hands-On Times, Adherence to Recommendations and Variance in Execution among Three Different CPR Algorithms: A Prospective Randomized Single-Blind Simulator-Based Trial. Int. J. Environ. Res. Public Health 2020, 17, 7946. [Google Scholar] [CrossRef]
- Poole, K.; Couper, K.; Smyth, M.A.; Yeung, J.; Perkins, G.D. Mechanical CPR: Who? When? How? Crit. Care 2018, 22, 140. [Google Scholar] [CrossRef] [Green Version]
- Sommers, M.S. Potential for injury: Trauma after cardiopulmonary resuscitation. Heart Lung 1991, 20, 287–293. [Google Scholar]
- Righi, F.A.; Jenkins, S.; Lin, P.T. Nonskeletal injuries related to cardiopulmonary resuscitation: An autopsy study. J. Forensic Sci. 2021, 66, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.J.; Cha, Y.K.; Kim, J.S.; Do, H.H.; Bak, S.H.; Kwack, W.G. Computed tomographic findings of chest injuries following cardiopulmonary resuscitation: More complications for prolonged chest compressions? Medicine (Baltimore) 2020, 99, e21685. [Google Scholar] [CrossRef] [PubMed]
- Takayama, W.; Koguchi, H.; Endo, A.; Otomo, Y. The Association between Cardiopulmonary Resuscitation in Out-of-Hospital Settings and Chest Injuries: A Retrospective Observational Study. Prehospital Disaster Med. 2018, 33, 171–175. [Google Scholar] [CrossRef]
- Qvigstad, E.; Kramer-Johansen, J.; Tomte, O.; Skalhegg, T.; Sorensen, O.; Sunde, K.; Olasveengen, T.M. Clinical pilot study of different hand positions during manual chest compressions monitored with capnography. Resuscitation 2013, 84, 1203–1207. [Google Scholar] [CrossRef]
- Orlowski, J.P. Optimum position for external cardiac compression in infants and young children. Ann. Emerg. Med. 1986, 15, 667–673. [Google Scholar] [CrossRef]
- Idris, A.H.; Guffey, D.; Pepe, P.E.; Brown, S.P.; Brooks, S.C.; Callaway, C.W.; Christenson, J.; Davis, D.P.; Daya, M.R.; Gray, R.; et al. Chest compression rates and survival following out-of-hospital cardiac arrest. Crit. Care Med. 2015, 43, 840–848. [Google Scholar] [CrossRef]
- Idris, A.H.; Guffey, D.; Aufderheide, T.P.; Brown, S.; Morrison, L.J.; Nichols, P.; Powell, J.; Daya, M.; Bigham, B.L.; Atkins, D.L.; et al. Relationship between chest compression rates and outcomes from cardiac arrest. Circulation 2012, 125, 3004–3012. [Google Scholar] [CrossRef] [Green Version]
- Stiell, I.G.; Brown, S.P.; Nichol, G.; Cheskes, S.; Vaillancourt, C.; Callaway, C.W.; Morrison, L.J.; Christenson, J.; Aufderheide, T.P.; Davis, D.P.; et al. What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients? Circulation 2014, 130, 1962–1970. [Google Scholar] [CrossRef] [Green Version]
- Hellevuo, H.; Sainio, M.; Nevalainen, R.; Huhtala, H.; Olkkola, K.T.; Tenhunen, J.; Hoppu, S. Deeper chest compression—More complications for cardiac arrest patients? Resuscitation 2013, 84, 760–765. [Google Scholar] [CrossRef]
- Hostler, D.; Everson-Stewart, S.; Rea, T.D.; Stiell, I.G.; Callaway, C.W.; Kudenchuk, P.J.; Sears, G.K.; Emerson, S.S.; Nichol, G. Effect of real-time feedback during cardiopulmonary resuscitation outside hospital: Prospective, cluster-randomised trial. BMJ 2011, 342, d512. [Google Scholar] [CrossRef] [Green Version]
- Stiell, I.G.; Brown, S.P.; Christenson, J.; Cheskes, S.; Nichol, G.; Powell, J.; Bigham, B.; Morrison, L.J.; Larsen, J.; Hess, E.; et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit. Care Med. 2012, 40, 1192–1198. [Google Scholar] [CrossRef] [Green Version]
- Moller Nielsen, A.; Rasmussen, L.S. Damage and depth of chest compressions. Resuscitation 2013, 84, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Zuercher, M.; Hilwig, R.W.; Ranger-Moore, J.; Nysaether, J.; Nadkarni, V.M.; Berg, M.D.; Kern, K.B.; Sutton, R.; Berg, R.A. Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest. Crit. Care Med. 2010, 38, 1141–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niles, D.E.; Sutton, R.M.; Nadkarni, V.M.; Glatz, A.; Zuercher, M.; Maltese, M.R.; Eilevstjonn, J.; Abella, B.S.A.; Becker, L.B.; Berg, R.A. Prevalence and hemodynamic effects of leaning during CPR. Resuscitation 2011, 82 (Suppl. S2), S23–S26. [Google Scholar] [CrossRef] [Green Version]
- Olds, K.; Byard, R.W.; Langlois, N.E. Injuries associated with resuscitation—An overview. J. Forensic Leg. Med. 2015, 33, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Rudinska, L.I.; Hejna, P.; Ihnat, P.; Smatanova, M.; Dvoracek, I.; Truhlar, A. Injuries associated with cardiopulmonary resuscitation. Soud. Lek. 2014, 59, 28–33. [Google Scholar]
- Hata, Y.; Ichimata, S.; Nishida, N. Two autopsy cases with injuries to the stomach following cardiopulmonary resuscitation. Leg. Med. (Tokyo) 2021, 53, 101916. [Google Scholar] [CrossRef]
- Diop, S.; Gautier, A.; Moussa, N.; Legriel, S. Cardiopulmonary resuscitation-related left gastric artery laceration. Intensive Care Med. 2019, 45, 1307–1308. [Google Scholar] [CrossRef]
- Spoormans, I.; Hoorenbeeck, K.V.; Balliu, L.; Jorens, P.G. Gastric perforation after cardiopulmonary resuscitation: Review of the literature. Resuscitation 2010, 81, 272–280. [Google Scholar] [CrossRef]
- Meron, G.; Kurkciyan, I.; Sterz, F.; Susani, M.; Domanovits, H.; Tobler, K.; Bohdjalian, A.; Laggner, A.N. Cardiopulmonary resuscitation-associated major liver injury. Resuscitation 2007, 75, 445–453. [Google Scholar] [CrossRef]
- Moriguchi, S.; Hamanaka, K.; Nakamura, M.; Takaso, M.; Baba, M.; Hitosugi, M. Aging is only significant factor causing CPR-induced injuries and serious injuries. Leg. Med. 2021, 48, 101828. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Loehrke, M. Lung herniation post cardiopulmonary resuscitation. J. Postgrad. Med. 2014, 60, 212–213. [Google Scholar] [CrossRef] [PubMed]
- Ram, P.; Menezes, R.G.; Sirinvaravong, N.; Luis, S.A.; Hussain, S.A.; Madadin, M.; Lasrado, S.; Eiger, G. Breaking your heart-A review on CPR-related injuries. Am. J. Emerg. Med. 2018, 36, 838–842. [Google Scholar] [CrossRef]
- Chan, P.S.; Nichol, G.; Krumholz, H.M.; Spertus, J.A.; Nallamothu, B.K. Hospital variation in time to defibrillation after in-hospital cardiac arrest. Arch. Intern. Med. 2009, 169, 1265–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasson, C.; Rogers, M.A.M.; Dahl, J.; Kellermann, A.L. Predictors of survival from out-of-hospital cardiac arrest: A systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 63–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffrey, S.L.; Willoughby, P.J.; Pepe, P.E.; Becker, L.B. Public use of automated external defibrillators. N. Engl. J. Med. 2002, 347, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- NishanthaVadysinghe, A.; Thambirajah, B.; Denniss, K.M. Abuse of defibrillator pads: Suicide by electrocution. J. Forensic Leg. Med. 2021, 83, 102252. [Google Scholar] [CrossRef]
- Sucu, M.; Davutoglu, V.; Ozer, O. Electrical cardioversion. Ann. Saudi Med. 2009, 29, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Black, C.J.; Busuttil, A.; Robertson, C. Chest wall injuries following cardiopulmonary resuscitation. Resuscitation 2004, 63, 339–343. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Makino, Y.; Chiba, F.; Torimitsu, S.; Yajima, D.; Inokuchi, G.; Motomura, A.; Hashimoto, M.; Hoshioka, Y.; Shinozaki, T.; et al. Frequency and influencing factors of cardiopulmonary resuscitation-related injuries during implementation of the American Heart Association 2010 Guidelines: A retrospective study based on autopsy and postmortem computed tomography. Int. J. Leg. Med. 2017, 131, 1655–1663. [Google Scholar] [CrossRef]
- Ondruschka, B.; Baier, C.; Siekmeyer, M.; Buschmann, C.; Dreßler, J.; Bernhard, M. Cardiopulmonary resuscitation-associated injuries in still-/newborns, infants and toddlers in a German forensic collective. Forensic Sci. Int. 2017, 279, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Price, E.A.; Rush, L.R.; Perper, J.A.; Bell, M.D. Cardiopulmonary resuscitation-related injuries and homicidal blunt abdominal trauma in children. Am. J. Forensic Med. Pathol. 2000, 21, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Bush, C.M.; Jones, J.S.; Cohle, S.D.; Johnson, H. Pediatric injuries from cardiopulmonary resuscitation. Ann. Emerg. Med. 1996, 28, 40–44. [Google Scholar] [CrossRef]
- Matshes, E.W.; Lew, E.O. Do resuscitation-related injuries kill infants and children? Am. J. Forensic Med. Pathol. 2010, 31, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Hoke, R.S.; Chamberlain, D. Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 2004, 63, 327–338. [Google Scholar] [CrossRef]
- Thompson, M.; Langlois, N.E.I.; Byard, R.W. Flail Chest Following Failed Cardiopulmonary Resuscitation. J. Forensic Sci. 2017, 62, 1220–1222. [Google Scholar] [CrossRef]
- Ananiadou, O.; Karaiskos, T.; Givissis, P.; Drossos, G. Operative stabilization of skeletal chest injuries secondary to cardiopulmonary resuscitation in a cardiac surgical patient. Interact. CardioVascular Thorac. Surg. 2010, 10, 478–480. [Google Scholar] [CrossRef] [Green Version]
- Plaisance, P.; Adnet, F.; Vicaut, E.; Hennequin, B.; Magne, P.; Prudhomme, C.; Lambert, Y.; Cantineau, J.P.; Leopold, C.; Ferraci, C.; et al. Benefit of active compression-decompression cardiopulmonary resuscitation as a prehospital advanced cardiac life support. A randomized multicenter study. Circulation 1997, 95, 955–961. [Google Scholar] [CrossRef]
- Wik, L. Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation. Resuscitation 2000, 47, 7–25. [Google Scholar] [CrossRef]
- Steen, S.; Liao, Q.; Pierre, L.; Paskevicius, A.; Sjöberg, T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 2002, 55, 285–299. [Google Scholar] [CrossRef]
- Gaxiola, A.; Varon, J. Evolution and new perspective of chest compression mechanical devices. Am. J. Emerg. Med. 2008, 26, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Ruemmler, R.; Stein, J.; Duenges, B.; Renz, M.; Hartmann, E.K. Standardized post-resuscitation damage assessment of two mechanical chest compression devices: A prospective randomized large animal trial. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 79. [Google Scholar] [CrossRef] [PubMed]
- Friberg, N.; Schmidbauer, S.; Walther, C.; Englund, E. Skeletal and soft tissue injuries after manual and mechanical chest compressions. Eur. Heart J. Qual. Care Clin. Outcomes 2019, 5, 259–265. [Google Scholar] [CrossRef]
- Lardi, C.; Egger, C.; Larribau, R.; Niquille, M.; Mangin, P.; Fracasso, T. Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS2): A forensic autopsy study. Int. J. Legal Med. 2015, 129, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Smekal, D.; Johansson, J.; Huzevka, T.; Rubertsson, S. No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device—A pilot study. Resuscitation 2009, 80, 1104–1107. [Google Scholar] [CrossRef]
- Magliocca, A.; Rezoagli, E.; Zani, D.; Manfredi, M.; De Giorgio, D.; Olivari, D.; Fumagalli, F.; Langer, T.; Avalli, L.; Grasselli, G.; et al. Cardiopulmonary Resuscitation-associated Lung Edema (CRALE). A Translational Study. Am. J. Respir. Crit. Care Med. 2021, 203, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.C.; Haden-Pinneri, K.; Love, J.C. Manual and automated cardiopulmonary resuscitation (CPR): A comparison of associated injury patterns. J. Forensic Sci. 2013, 58, 904–909. [Google Scholar] [CrossRef]
- Baubin, M.; Sumann, G.; Rabl, W.; Eibl, G.; Wenzel, V.; Mair, P. Increased frequency of thorax injuries with ACD-CPR. Resuscitation 1999, 41, 33–38. [Google Scholar] [CrossRef]
- Merdji, H.; Poussardin, C.; Helms, J.; Meziani, F. Vertebral fracture as a complication of cardiopulmonary resuscitation. Intensive Care Med. 2018, 44, 1750–1751. [Google Scholar] [CrossRef]
- Smekal, D.; Hansen, T.; Sandler, H.; Rubertsson, S. Comparison of computed tomography and autopsy in detection of injuries after unsuccessful cardiopulmonary resuscitation. Resuscitation 2013, 84, 357–360. [Google Scholar] [CrossRef]
- Rabl, W.; Baubin, M.; Broinger, G.; Scheithauer, R. Serious complications from active compression-decompression cardiopulmonary resuscitation. Int. J. Legal Med. 1996, 109, 84–89. [Google Scholar]
- Deliliga, A.; Chatzinikolaou, F.; Koutsoukis, D.; Chrysovergis, I.; Voultsos, P. Cardiopulmonary resuscitation (CPR) complications encountered in forensic autopsy cases. BMC Emerg. Med. 2019, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Lederer, W.; Mair, D.; Rabl, W.; Baubin, M. Frequency of rib and sternum fractures associated with out-of-hospital cardiopulmonary resuscitation is underestimated by conventional chest X-ray. Resuscitation 2004, 60, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, C.T.; Tsokos, M. Frequent and rare complications of resuscitation attempts. Intensive Care Med. 2009, 35, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Moriya, F.; Furumiya, J. Forensic aspects of complications resulting from cardiopulmonary resuscitation. Leg. Med. (Tokyo) 2007, 9, 94–99. [Google Scholar] [CrossRef]
- Wininger, K.L. Chest compressions: Biomechanics and injury. Radiol. Technol. 2007, 78, 269–274. [Google Scholar]
- Genbrugge, C.; Eertmans, W.; Salcido, D.D. Monitor the quality of cardiopulmonary resuscitation in 2020. Curr. Opin. Crit. Care 2020, 26, 219–227. [Google Scholar] [CrossRef]
- Cheng, A.; Overly, F.; Kessler, D.; Nadkarni, V.M.; Lin, Y.; Doan, Q.; Duff, J.P.; Tofil, N.M.; Bhanji, F.; Adler, M.; et al. Perception of CPR quality: Influence of CPR feedback, Just-in-Time CPR training and provider role. Resuscitation 2015, 87, 44–50. [Google Scholar] [CrossRef]
- Lin, Y.; Cheng, A.; Grant, V.J.; Currie, G.R.; Hecker, K.G. Improving CPR quality with distributed practice and real-time feedback in pediatric healthcare providers—A randomized controlled trial. Resuscitation 2018, 130, 6–12. [Google Scholar] [CrossRef]
- Birkenes, T.S.; Myklebust, H.; Neset, A.; Kramer-Johansen, J. Quality of CPR performed by trained bystanders with optimized pre-arrival instructions. Resuscitation 2014, 85, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Jollis, J.G.; Granger, C.B.; Henry, T.D.; Antman, E.M.; Berger, P.B.; Moyer, P.H.; Pratt, F.D.; Rokos, I.C.; Acuna, A.R.; Roettig, M.L.; et al. Systems of care for ST-segment-elevation myocardial infarction: A report From the American Heart Association’s Mission: Lifeline. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestler, D.M.; Noheria, A.; Haro, L.H.; Stead, L.G.; Decker, W.W.; Scanlan-Hanson, L.N.; Lennon, R.J.; Lim, C.; Holmes, D.R.; Rihal, C.S.; et al. Sustaining improvement in door-to-balloon time over 4 years: The Mayo clinic ST-elevation myocardial infarction protocol. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 508–513. [Google Scholar] [CrossRef] [Green Version]
- Santana, M.J.; Stelfox, H.T. Quality indicators used by trauma centers for performance measurement. J. Trauma Acute Care Surg. 2012, 72, 1298–1302, discussion 12303. [Google Scholar] [CrossRef] [PubMed]
- Free Software Foundation. 2022. Available online: http://www.gnu.org/software/pspp (accessed on 12 March 2022).
- Kramer-Johansen, J.; Edelson, D.P.; Losert, H.; Köhler, K.; Abella, B.S. Uniform reporting of measured quality of cardiopulmonary resuscitation (CPR). Resuscitation 2007, 74, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Baubin, M.; Rabl, W.; Pfeiffer, K.P.; Benzer, A.; Gilly, H. Chest injuries after active compression-decompression cardiopulmonary resuscitation (ACD-CPR) in cadavers. Resuscitation 1999, 43, 9–15. [Google Scholar] [CrossRef]
CPR Device | CPR-Related Injuries | Risk Factors |
---|---|---|
LUCASTM | Rib and sternal fracture; haemato- and pneumothorax; pulmonary contusion; lung bleeding; pulmonary edema; mediastinal, retrosternal, and pericostal bleeding; hematoperitoneum; aortic laceration; right coronary artery rupture; cardiac petechiae; epicardial hemorrhage; myocardial rupture; hemopericardium; laceration of esophageal, tracheal, and gastric mucosae; pancreatic bleeding; perirenal bleeding; liver and spleen laceration; chest cutaneous lesions; breast implant rupture | Positioning/handling the device, CPR duration, age, female gender |
AutoPulse® | Rib and vertebral fractures; skin abrasions; liver, mesenteric, and splenic laceration; hemoperitoneum | |
CardioPump® | Vertebral, sternal, and rib fractures; skin abrasions; liver laceration |
Inclusion criteria | human (male/female, any gender, any age) |
clinical or non-clinical resuscitation | |
manual or mechanical resuscitation | |
any type of injuries | |
any anatomical region of injuries | |
any number of injuries | |
any underlying diseases | |
any procedure to determine injuries | |
any patient outcome | |
Exclusion criteria | animal model |
resuscitation without injuries | |
injuries resulting from inadequate perfusion/ventilation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gödde, D.; Bruckschen, F.; Burisch, C.; Weichert, V.; Nation, K.J.; Thal, S.C.; Marsch, S.; Sellmann, T. Manual and Mechanical Induced Peri-Resuscitation Injuries—Post-Mortem and Clinical Findings. Int. J. Environ. Res. Public Health 2022, 19, 10434. https://doi.org/10.3390/ijerph191610434
Gödde D, Bruckschen F, Burisch C, Weichert V, Nation KJ, Thal SC, Marsch S, Sellmann T. Manual and Mechanical Induced Peri-Resuscitation Injuries—Post-Mortem and Clinical Findings. International Journal of Environmental Research and Public Health. 2022; 19(16):10434. https://doi.org/10.3390/ijerph191610434
Chicago/Turabian StyleGödde, Daniel, Florian Bruckschen, Christian Burisch, Veronika Weichert, Kevin J. Nation, Serge C. Thal, Stephan Marsch, and Timur Sellmann. 2022. "Manual and Mechanical Induced Peri-Resuscitation Injuries—Post-Mortem and Clinical Findings" International Journal of Environmental Research and Public Health 19, no. 16: 10434. https://doi.org/10.3390/ijerph191610434
APA StyleGödde, D., Bruckschen, F., Burisch, C., Weichert, V., Nation, K. J., Thal, S. C., Marsch, S., & Sellmann, T. (2022). Manual and Mechanical Induced Peri-Resuscitation Injuries—Post-Mortem and Clinical Findings. International Journal of Environmental Research and Public Health, 19(16), 10434. https://doi.org/10.3390/ijerph191610434