Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park
Abstract
:1. Introduction
- What was the size, change and spatial distribution of the carbon sink capacity when there was no national park in the study area over the past 20 years?
- What are the main driving forces and influencing factors behind the change in the carbon sink capacity?
- For different climate scenarios in the future, how will the carbon sink capacity of the national park area change? If the national park is established, can the implementation of the control measures help to improve the carbon sink capacity of the research area?
2. Materials and Methods
2.1. Study Area
2.2. Simulation of Carbon Sink Capacity
2.3. Correlation of Carbon Sink Potential with Human Activities and Natural Sensitive Elements
2.4. Zoning Control Path of the National Park
2.5. Estimation of the Future Carbon Sink Capacity under Different Climate Change Scenarios
- Scenario A: Scenario A refers to the change in carbon sink capacity due to natural climate change by 2060. The setting of this scenario included the following indicators: MAP indicators, which refer to mean annual precipitation; and MAT indicators, which refer to mean annual temperature. Here, we estimated the change in carbon sink capacity by obtaining the MAP and MAT data of four representative concentration pathways (RCPs), RCP2.6, RCP4.5, RCP7.0 and RCP8.5 climate change scenarios of SSPs 1, 2, 3 and 5;
- Scenario B: Scenario B refers to the change in carbon sink capacity due to the intensity of human activities under the premise of different zoning controls by 2060. The setting of this scenario included the following indicators: the setting of the meteorological data was consistent with scenario A. The HFI indicators refer to the human footprint index. The setting of such indicators will lead to different levels of human activity factors due to the difference in the regional control levels. Here, we believe that under the premise of different zoning controls, the proportion of human activity intensity will be reduced from high to low. The strictly protected areas will be reduced by 100%, the ecological conservation areas will be reduced by 75%, the scientific and technological recreation areas will be reduced by 50%, the traditional utilization areas will be reduced by 25% and the areas with undetermined boundaries will be reduced by 0%.
3. Results and Analyses
3.1. Temporal and Spatial Trends in the Carbon Sink
3.1.1. Characteristics of Temporal Variation
3.1.2. Characteristics of Spatial Distribution
3.2. Drivers of Carbon Sink Capacity
3.3. Functional Zoning of National Parks
3.4. Carbon Sink Capacity Prediction under Different Scenarios
4. Uncertainty and Limitations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, S.; Irl, S.; Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 2019, 10, 4787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pack, S.M.; Ferreira, M.N.; Krithivasan, R.; Murrow, J.; Bernard, E.; Mascia, M.B. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 2016, 197, 32–39. [Google Scholar] [CrossRef]
- Pringle, R.M. Upgrading protected areas to conserve wild biodiversity. Nature 2017, 546, 91–99. [Google Scholar] [CrossRef]
- Dudley, N. Guidelines for Applying Protected Area Management Categories. Management Categories International Union for Conservation of Nature & Natural Resources. 2008. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjmwor3x7n5AhVAmFYBHQU6DjkQFnoECAcQAQ&url=https%3A%2F%2Fportals.iucn.org%2Flibrary%2Fefiles%2Fdocuments%2Fpag-021.pdf&usg=AOvVaw1I0YEEwPv06wHmgXH2VQTR (accessed on 20 March 2022).
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef]
- Melillo, J.M.; Lu, X.L.; Kicklighter, D.W.; Reilly, J.M.; Cai, Y.X.; Sokolov, A.P. Protected areas’ role in climate-change mitigation. Ambio 2016, 45, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.B.; Mitchard, E.T.A. A small subset of protected areas are a highly significant source of carbon emissions. Sci. Rep. 2017, 7, 41902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, N.; Xu, X.T.; Meng, J.H.; Wang, Z.H. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun. 2021, 12, 2822. [Google Scholar] [CrossRef]
- Dimobe, K.; Kuyah, S.; Dabre, Z.; Ouedraogo, A.; Thiombiano, A. Diversity-carbon stock relationship across vegetation types in W National park in Burkina Faso. For. Ecol. Manag. 2019, 438, 243–254. [Google Scholar] [CrossRef]
- Banasiak, A.; Bilmes, L.; Loomis, J. Carbon Sequestration in the U.S. National Parks: A Value beyond Visitation. Verso 2015. Available online: https://www.hks.harvard.edu/publications/carbon-sequestration-us-national-parks-value-beyond-visitation (accessed on 20 March 2022).
- Zhang, C.; Tian, H.Q.; Chappelka, A.H.; Ren, W.; Chen, H.; Pan, S.F.; Liu, M.L.; Styers, D.M.; Chen, G.S.; Wang, Y.H. Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park. Environ. Pollut. 2007, 149, 336–347. [Google Scholar] [CrossRef]
- Cambule, A.H.; Rossiter, D.G.; Stoorvogel, J.J.; Smaling, E.M.A. Soil organic carbon stocks in the Limpopo National Park, Mozambique: Amount, spatial distribution and uncertainty. Geoderma 2014, 213, 46–56. [Google Scholar] [CrossRef]
- Tue, N.T.; Dung, L.V.; Nhuan, M.T.; Mori, K. Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. Catena 2014, 121, 119–126. [Google Scholar] [CrossRef]
- Grossi, G.; Vitali, A.; Bernabucci, U.; Lacetera, N.; Nardone, A. Greenhouse Gas Emissions and Carbon Sinks of an Italian Natural Park. Front. Environ. Sci. 2021, 9, 706880. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, R.H.; Jiang, Y.L.; Li, C. Contributions of climate change and human activities to vegetation dynamics in Qilian Mountain National Park, northwest China. Glob. Ecol. Conserv. 2021, 32, e01947. [Google Scholar] [CrossRef]
- Gou, R.K.; Li, W.; Yang, Y.Z.; Bai, J.K.; Meng, Y.C.; Wu, J.; Ding, Y.L.; Dai, Z.; Shi, Q.; Song, S.S.; et al. Changes in Water Retention and Carbon Sequestration in the Huangshan UNESCO Global Geopark (China) from 2000 to 2015. Forests 2020, 11, 1152. [Google Scholar] [CrossRef]
- He, S.Y.; Su, Y.; Wang, L.; Gallagher, L.; Cheng, H.G. Taking an ecosystem services approach for a new national park system in China. Resour. Conserv. Recycl. 2018, 137, 136–144. [Google Scholar] [CrossRef]
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.A.; Berry, P.M.; Simpson, G.; Haslett, J.R.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-Llorente, M.; Geamana, N.; et al. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosyst. Serv. 2014, 9, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Oldekop, J.A.; Holmes, G.; Harris, W.E.; Evans, K.L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 2016, 30, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Overall Plan for Establishing a National Park System. 2017. Available online: http://www.gov.cn/zhengce/2017-09/26/content_5227713.htm (accessed on 20 March 2022).
- Opinions on Fully, Accurately and Comprehensively Implementing the New Development Concept to Achieve Carbon Peak and Carbon Neutral Work. 2021. Available online: http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm (accessed on 20 March 2022).
- Peak Carbon 2030 Action Plan. 2021. Available online: http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm (accessed on 20 March 2022).
- Ma, T.; Lu, C.; Lei, G. The spatial overlapping analysis for China’s natural protected area and countermeasures for the optimization and integration of protected area system. Biodivers. Sci. 2019, 27, 758–771. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Bai, Y.; Li, L.; Jiang, G.; Huang, J.; Huang, Z.; Zhang, W.; Gao, S. Scientific basis and practical ways for sustainable development of Chinas pasture regions. Chin. Sci. Bull. 2016, 61, 155–164. [Google Scholar]
- Du, Z.; Zhang, Q.; Wu, S. Mountain Geoecology and Sustainable Development of the Tibetan Plateau; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Zhang, X.; Yang, Y.; Piao, S.; Bao, W.; Wang, S.; Wang, G.; Sun, H.; Luo, T.; Zhang, Y.; Shi, P.; et al. Ecological change on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3048–3056. [Google Scholar]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and Construction of the National Ecological Security Shelter Zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Li, H.W.; Wu, Y.P.; Chen, J.; Zhao, F.B.; Wang, F.; Sun, Y.Z.; Zhang, G.C.; Qiu, L.J. Responses of soil organic carbon to climate change in the Qilian Mountains and its future projection. J. Hydrol. 2021, 596, 126110. [Google Scholar] [CrossRef]
- Yu, H.; Zhong, L.; Fan, J. Regional function and spatial structure of National Park Cluster in Qinghai- Tibet Plateau. Acta Ecol. Sin. 2021, 41, 823–832. [Google Scholar]
- Fan, J.; Zhong, L.S.; Huang, B.R.; Yu, H.; Wang, Y.F.; Chen, D.; Guo, R.; Liu, B.Y. Territorial function and feasibility of the Earth’s Third Pole national park cluster. Chin. Sci. Bull. Chin. 2019, 64, 2938–2948. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, C.A.; Salerno, J.; Hartter, J.; Chapman, C.A.; Reyna, R.; Tumusiime, D.M.; Drake, M. Changing perceptions of protected area benefits and problems around Kibale National Park, Uganda. J. Environ. Manag. 2017, 200, 217–228. [Google Scholar] [CrossRef]
- Ghoddousi, S.; Pintassilgo, P.; Mendes, J.; Ghoddousi, A.; Sequeira, B. Tourism and nature conservation: A case study in Golestan National Park, Iran. Tour. Manag. Perspect. 2018, 26, 20–27. [Google Scholar] [CrossRef]
- Du, W.B.; Jia, P.; Du, G.Z. Current biogeographical roles of the Kunlun Mountains. Ecol. Evol. 2022, 12, e8493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, C.; Hao, H.; Li, S.; Qiao, Q.; Wang, H.; Ning, Y. Spatial-temporal Change of Carbon Storage and Carbon Sink of Grassland Ecosystem in the Three-River Headwaters Region Based on MODIS GPP/NPP Data. Ecol. Environ. Sci. 2015, 24, 8–13. [Google Scholar]
- Wong, C.; Young, D.; Latimer, A.M.; Buckley, T.N.; Magney, T.S. Importance of the legacy effect for assessing spatiotemporal correspondence between interannual tree-ring width and remote sensing products in the Sierra Nevada. Remote Sens. Environ. 2021, 265, 112635. [Google Scholar] [CrossRef]
- Zsva, B.; Hjhc, D.; Mdc, D.; Ajm, E. Mapping soil organic carbon stocks and trends with satellite-driven high resolution maps over South Africa. Sci. Total Environ. 2021, 771, 145384. [Google Scholar]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Modeling Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.; Senior, C.; Stevens, B.; Stouffer, R.; Taylor, K. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Ramapriyan, H.K.; Behnke, J.; Sofinowski, E.; Lowe, D.; Esfandiari, M.A. Evolution of the earth observing system (EOS) data and information system (EOSDIS). In Standard-Based Data and Information Systems for Earth Observation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 63–92. [Google Scholar]
- Rabe-Hesketh, S.; Skrondal, A. Generalized linear mixed-effects models. In Longitudinal Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008; pp. 93–120. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Qiu, J.; Cardinale, B.J. Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 2020, 101, e03166. [Google Scholar] [CrossRef]
- Anand, V.; Oinam, B.; Singh, I.H. Predicting the current and future potential spatial distribution of endangered Rucervus eldii eldii (Sangai) using MaxEnt model. Environ. Monit. Assess. 2021, 193, 1–17. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2014, 67, 1–48. [Google Scholar] [CrossRef]
- Central Committee of the Communist Party of China. Overall Plan of Ecological Civilization System Reform. Government News Post. 2015. Available online: http://www.gov.cn/guowuyuan/2015-09/21/content_2936327.htm (accessed on 20 March 2022).
- Ma, B.R.; Zeng, W.H.; Xie, Y.X.; Wang, Z.Z.; Hu, G.Z.; Li, Q.; Cao, R.X.; Zhuo, Y.; Zhang, T.Z. Boundary delineation and grading functional zoning of Sanjiangyuan National Park based on biodiversity importance evaluations. Sci. Total Environ. 2022, 825, 154068. [Google Scholar] [CrossRef]
- State Forestry Administration. Guidelines for National Park Function Zoning. 2018. Available online: http://www.forestry.gov.cn/uploadfile/lykj/2018-3/file/2018-3-9-a337303fc80e4d2b9b17ec651bafdf7e.pdf (accessed on 20 March 2022).
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.D.; Tian, J.L.; Ren, Y.H.; Li, J.S.; Liu, W.W.; Zhu, Y.P. Functional zoning and space management of Three-River-Source National Park. J. Geogr. Sci. 2019, 29, 2069–2084. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.H.; Wang, S.J.; Bai, X.Y.; Tian, Y.C.; Luo, G.J.; Wang, J.F.; Li, Q.; Chen, F.; Deng, Y.H.; Yang, Y.J.; et al. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecol. Indic. 2020, 115, 106392. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.L.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E.; et al. Area-based conservation in the twenty-first century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Mascia, M.B.; Pallier, S.; Thieme, M.L.; Rowe, A.; Bottrill, M.C.; Danielsen, F.; Geldmann, J.; Naidoo, R.; Pullin, A.S.; Burgess, N.D. Commonalities and complementarities among approaches to conservation monitoring and evaluation. Biol. Conserv. 2014, 169, 258–267. [Google Scholar] [CrossRef]
- Bennett, N.J. Using perceptions as evidence to improve conservation and environmental management. Conserv. Biol. 2016, 30, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Teng, M.J.; Zeng, L.X.; Hu, W.J.; Wang, P.C.; Yan, Z.G.; He, W.; Zhang, Y.; Huang, Z.L.; Xiao, W.F. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. 2020, 714, 136691. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Lin, H.; Montenegro, A.; Zhu, X. NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. Int. J. Climatol. 2015, 35, 687–698. [Google Scholar] [CrossRef]
- Yang, L.S.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.L.; Wen, X.H.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 143532. [Google Scholar] [CrossRef]
- Qin, X.; Liu, W.B.; Mao, R.C.; Song, J.X.; Chen, Y.N.; Ma, C.; Li, M.Y. Quantitative assessment of driving factors affecting human appropriation of net primary production (HANPP) in the Qilian Mountains, China. Ecol. Indic. 2021, 121, 106997. [Google Scholar] [CrossRef]
- Qiao, C.C.; Shen, S.; Cheng, C.X.; Wu, J.X.; Jia, D.; Song, C.Q. Vegetation Phenology in the Qilian Mountains and Its Response to Temperature from 1982 to 2014. Remote Sens. 2021, 13, 286. [Google Scholar] [CrossRef]
- Villalba, G.; Tarnay, L.; Campbell, E.; Gabarrell, X. A life-cycle carbon footprint of Yosemite National Park. Energy Policy 2013, 62, 1336–1343. [Google Scholar] [CrossRef]
Variable | Units | Source | Origin Spatial Resolution |
---|---|---|---|
HFI | EOSDIS (The Earth Observing System Data and Information System) | 1 km | |
Elevation | m | WorldClim | 1 km |
MAT | °C | WorldClim | 1 km |
MAP | mm | 1 km | |
AI | Consortium for Spatial Information(CGIAR-CSI) | 1 km | |
PET | mm | 1 km | |
SOC | % | The Global Soil Dataset for Earth System Modeling (GSDE) | 1 km |
pH (H2O) | 1 km | ||
BD | g cm−3 | 1 km | |
TN | % | 1 km | |
TP | % | 1 km | |
TK | % | 1 km | |
VWC | % | 1 km |
Partition Type | Carbon Sink Capacity | Population Distribution | Ecosystem | Management and Control Requirements |
---|---|---|---|---|
Strictly protected area | High | Nothing | Complete | The natural ecological geographical units, such as the intact original forest ecosystem and alpine meadow ecosystem, are protected in this area. Human activities are strictly prohibited. |
Ecological conservation area | Higher | Lower concentration | Relatively complete | This area contains important and fragile ecosystems, which need to be restored to the degraded natural ecosystems, or the influence of external interference must be isolated or slowed in the strictly protected areas. Human activities in principle are restricted. |
Science, education and recreation area | Middle | Moderate concentration | Moderately complete | This area has good recreational resources, a cultural landscape and a pleasant environment, and it is convenient to implement a natural experience, eco-tourism, rest and health activities, and moderate human activities. |
Traditional utilization area | Lower | Higher concentration | Lower integrity | This area is the production and living space of the original residents. To ensure the basic living needs of the original residents, the urban and rural construction land is strictly controlled in accordance with the overall land use plan. The use is limited in principle. |
Boundary undetermined area | Nothing | Nothing | Nothing | There are no important natural resources, unique landscape resources or human activities in this area. |
NPP | ||||
---|---|---|---|---|
Predictors | Estimate | CI | Sum of Squares | p |
Fixed effects | ||||
(Intercept) | −267.88 | −446.14–89.62 | 0.003 | |
BD | 120.65 | 18.60–222.70 | 2.90 × 105 | 0.020 |
HFI | −2.08 | −3.97–−0.19 | 2.53 × 105 | 0.031 |
MAP | 2.65 | 2.61–2.70 | 6.82 × 108 | <0.001 |
MAT | 23.36 | 18.25–28.27 | 4.47 × 106 | <0.001 |
PET | 0.05 | 0.03–0.06 | 1.84 × 106 | <0.001 |
pH | 43.98 | 31.72–56.24 | 2.67 × 106 | <0.001 |
TK | −99.42 | −113.23–−85.62 | 1.08 × 107 | <0.001 |
TN | −94.72 | −174.78–−14.65 | 2.90 × 105 | 0.020 |
VWC | −499.30 | −803.25–−195.35 | 5.60 × 105 | 0.001 |
TP | −141.69 | −418.87–135.49 | 5.42 × 104 | 0.316 |
Random effects | ||||
σ2 | 54,018.18 | |||
τ00 Elevation | 46,059.79 | |||
ICC | 0.46 | |||
N Elevation | 1342 | |||
Observations | 34,028 | |||
Marginal R2 | 0.374 | |||
Conditional R2 | 0.662 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Du, M.; Du, W.; Guo, J.; Liao, Z.; Kang, X.; Liu, Q. Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park. Int. J. Environ. Res. Public Health 2022, 19, 9887. https://doi.org/10.3390/ijerph19169887
Zhao L, Du M, Du W, Guo J, Liao Z, Kang X, Liu Q. Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park. International Journal of Environmental Research and Public Health. 2022; 19(16):9887. https://doi.org/10.3390/ijerph19169887
Chicago/Turabian StyleZhao, Li, Mingxi Du, Wei Du, Jiahuan Guo, Ziyan Liao, Xiang Kang, and Qiuyu Liu. 2022. "Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park" International Journal of Environmental Research and Public Health 19, no. 16: 9887. https://doi.org/10.3390/ijerph19169887
APA StyleZhao, L., Du, M., Du, W., Guo, J., Liao, Z., Kang, X., & Liu, Q. (2022). Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park. International Journal of Environmental Research and Public Health, 19(16), 9887. https://doi.org/10.3390/ijerph19169887