Does the National Credit Demonstration Policy Affect Urban Green Economy Efficiency? Evidence from the Yangtze River Delta Region of China
Abstract
:1. Introduction
2. Literature Review
3. Indicator Construction, Data Description, and Measurement Model Setting
3.1. Indicator Construction
3.1.1. Green Economic Efficiency
3.1.2. National Credit Demonstration Policy
3.1.3. Control Variables
3.2. Description of Data
3.3. Measurement Models
4. Estimation of Measurement Results
4.1. Baseline Model Estimation Results
4.2. National Credit Demonstration Policies and Green Economy Efficiency: Locational Variability
4.3. National Credit Model Policies and Green Economy Efficiency: Political Variability
4.4. National Credit Demonstration Policies and Green Economy Efficiency: Interprovincial Variability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adam, Z. Green Development-Environment and Sustainability in A Developing World; Routledge: London, UK, 2009; pp. 1–10. [Google Scholar]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How Much Should We Trust Differences-in-Differences Estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef]
- Grossman, S.J.; Stiglitz, J.E. On the Impossibility of Informationally Efficient Markets. Am. Econ. Rev. 1980, 70, 393–408. [Google Scholar]
- Zhang, Q.; de Vries, A. Seeking Moral Legitimacy through Corporate Social Responsibility: Evidence from Chinese Manufacturing Multinationals. Sustainability 2022, 14, 5245. [Google Scholar] [CrossRef]
- Oskam, A. Productivity measurement, incorporating environmental effects of agricultural production. Agric. Econ. Policy Int. Chall. Nineties Elsevier Amst. 1991, 7, 186–204. [Google Scholar]
- Reinhard, S.; Lovell, C.; Thijssen, G. Econometric estimation of technical and environmental efficiency: An application to Dutch dairy farms. Am. J. Agric. Econ. 1999, 81, 44–60. [Google Scholar] [CrossRef]
- Hur, T.; Kim, I.; Yamamoto, R. Measurement of green productivity and its improvement. J. Clean. Prod. 2004, 12, 673–683. [Google Scholar] [CrossRef]
- Fredriksson, P.G.; Millimet, D.L. Strategic interaction and the determination of environmental policy across US states. J. Urban Econ. 2002, 51, 101–122. [Google Scholar] [CrossRef]
- Woods, N.D. Interstate competition and environmental regulation: A test of the race-to-the-bottom thesis. Soc. Sci. Q. 2006, 87, 174–189. [Google Scholar] [CrossRef]
- Angrist, J.D.; Pischke, J.S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2008; Volume 315. [Google Scholar]
- Brunnermeier, S.B.; Cohen, M.A. Determinants of environmental innovation in US manufacturing industries. J. Environ. Econ. Manag. 2003, 45, 278–293. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2020, 288, 125624. [Google Scholar] [CrossRef]
- Li, X.; Shi, P.; Han, Y.; Deng, A.; Liu, D. Measurement and Spatial Variation of Green Total Factor Productivity of the Tourism Industry in China. Int. J. Environ. Res. Public Health 2020, 17, 1159. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.H.; Fare, R.; Grosskopf, S. Productivity and undesirable output: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Tone, K. Dealing with Undesirable Outputs in DEA: A Slacks-Based Measure (SBM) Approach; GRIPS Research Report Series: Tokyo, Japan, 2003. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Kuosmanen, T. Green Productivity in Agriculture: A Critical Synthesis; Aalto University: Espoo, Finland, 2013; pp. 19–21. [Google Scholar]
- Zhang, Y.; Wei, J.; Wang, Y.; Tsai, S.; Zheng, X. An empirical study on the growth of agricultural areen total factor productivity in the Huanghuai River Economic Zone by big data computing. Math. Probl. Eng. 2022, 2022, 1775027. [Google Scholar]
- Peng, Y.; Chen, Z.; Lee, J. Dynamic Convergence of Green Total Factor Productivity in Chinese Cities. Sustainability 2020, 12, 4883. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Piao, H. Does Agricultural mechanization improve the green total factor productivity of China’s planting industry? Energies 2022, 15, 940. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z. Intelligence and Green Total Factor Productivity Based on China’s Province-Level Manufacturing Data. Sustainability 2021, 13, 4989. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, S.; Sun, J.; Zhong, K.; Shen, M.; Wang, X. A Study of the Spatial Structure and Regional Interaction of Agricultural Green Total Factor Productivity in China Based on SNA and VAR Methods. Sustainability 2022, 14, 7508. [Google Scholar] [CrossRef]
- Oh, D.A. Global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Erena, O.T.; Kalko, M.M.; Debele, S.A. Technical efficiency, technological progress and productivity growth of large and medium manufacturing industries in Ethiopia: A data envelopment analysis. Cogent Econ. Financ. 2021, 9, 1997160. [Google Scholar] [CrossRef]
- Terrell, G.R.; Scott, D.W. Variable Kernel Density Estimation. Ann. Stat. 1992, 20, 1236–1265. [Google Scholar] [CrossRef]
- Taskin, F.; Zaim, O. The Role of International Trade on Environmental Efficiency: A DEA Approach. Econ. Model. 2001, 18, 1–17. [Google Scholar] [CrossRef]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomersation and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Song, L.; Zhou, X. Does the Green Industry Policy Reduce Industrial Pollution Emissions?—Evidence from China’s National Eco-Industrial Park. Sustainability 2021, 13, 6343. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Zhao, H. The Selection of Green Technology Innovations under Dual-Credit Policy. Sustainability 2020, 12, 6343. [Google Scholar] [CrossRef]
- Hong, M.; Li, Z.; Drakeford, B. Do the Green Credit Guidelines Affect Corporate Green Technology Innovation? Empirical Research from China. Int. J. Environ. Res. Public Health 2021, 18, 1682. [Google Scholar] [CrossRef]
- Ge, K.; Zou, S.; Ke, S.; Chen, D. Does Urban Agglomeration Promote Urban Land Green Use Efficiency? Take the Yangtze River Economic Zone of China as an Example. Sustainability 2021, 13, 10527. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, J. Is Green Credit a Good Tool to Achieve “Double Carbon” Goal? Based on Coupling Coordination Model and PVAR Model. Sustainability 2021, 13, 14074. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, X.; Zhao, D.; Long, R.; Wu, M. The Dual Impacts of Green Credit on Economy and Environment: Evidence from China. Sustainability 2021, 13, 4574. [Google Scholar] [CrossRef]
- van Langen, S.K.; Passaro, R. The Dutch Green Deals Policy and Its Applicability to Circular Economy Policies. Sustainability 2021, 13, 11683. [Google Scholar] [CrossRef]
City | Is It Coastal? | Is it Above the Subprovincial Level? | Province | City | Is It Coastal? | Is It Above the Subprovincial Level? | Province |
---|---|---|---|---|---|---|---|
Shanghai | Yes | Yes | Shanghai | Quzhou | No | No | Zhejiang |
Nanjing | No | Yes | Jiangsu | Zhoushan | Yes | No | Zhejiang |
Wuxi | No | No | Jiangsu | Taizhou | Yes | No | Zhejiang |
Xuzhou | No | No | Jiangsu | Lishui | No | No | Zhejiang |
Changzhou | No | No | Jiangsu | Hefei | No | No | Anhui |
Suzhou | No | No | Jiangsu | Huaibei | No | No | Anhui |
Nantong | Yes | No | Jiangsu | Bozhou | No | No | Anhui |
Lianyungang | Yes | No | Jiangsu | Suzhou | No | No | Anhui |
Huai’an | No | No | Jiangsu | Bengbu | No | No | Anhui |
Yancheng | Yes | No | Jiangsu | Fuyang | No | No | Anhui |
Yangzhou | No | No | Jiangsu | Huainan | No | No | Anhui |
Zhenjiang | No | No | Jiangsu | Chuzhou | No | No | Anhui |
Taizhou | No | No | Jiangsu | Lu’an | No | No | Anhui |
Suqian | No | No | Jiangsu | Ma’anshan | No | No | Anhui |
Hangzhou | Yes | Yes | Zhejiang | Wuhu | No | No | Anhui |
Ningbo | Yes | Yes | Zhejiang | Xuancheng | No | No | Anhui |
Wenzhou | Yes | No | Zhejiang | Tongling | No | No | Anhui |
Huzhou | No | No | Zhejiang | Chizhou | No | No | Anhui |
Jiaxing | Yes | No | Zhejiang | Anqing | No | No | Anhui |
Shaoxing | Yes | No | Zhejiang | Huangshan | No | No | Anhui |
Jinhua | No | No | Zhejiang |
Measurement Indicators | 2015 | 2016 | 2019 |
---|---|---|---|
Interaction items (DID) | −0.1600 | −0.1442 | −0.1442 |
Green Economic Efficiency | −0.0627 | −0.1061 | −0.1511 |
Interaction term (DID) × Green economic efficiency | 0.0998 | −0.0548 | −0.1222 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model Type | OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | SEM |
Interaction items (DID) | 0.010 (0.775) | 0.010 (0.866) | 0.020 * (1.733) | 0.010 (0.751) | 0.010 (0.865) | 0.020 (1.678) | 0.012 (0.847) | 0.011 (0.943) | 0.027 ** (2.429) | 0.012 (0.830) | 0.011 (0.933) | 0.026 ** (2.352) | 0.015 ** (2.242) |
X1 | 0.014 (0.278) | 0.030 (0.620) | 0.020 (0.495) | 0.014 (0.273) | 0.030 (0.622) | 0.019 (0.470) | −0.0005 (−0.008) | 0.017 (0.318) | −0.017 (−0.407) | −0.007 (−0.112) | 0.011 (0.202) | −0.034 (−0.729) | |
X2 | 0.016 (0.405) | −0.003 (−0.086) | 0.003 (0.086) | 0.016 (0.357) | −0.002 (−0.055) | −0.0005 (−0.016) | 0.039 (0.740) | 0.018 (0.332) | 0.054 (1.277) | 0.048 (0.817) | 0.026 (0.478) | 0.069 (1.495) | |
X3 | 0.154 (1.544) | 0.157 * (1.756) | 0.183 ** (2.353) | 0.154 (1.501) | 0.158 * (1.744) | 0.176 (2.092) | 0.162 (1.565) | 0.163 * (1.800) | 0.197 ** (2.495) | 0.158 (1.502) | 0.158 (1.738) | 0.185 ** (2.310) | 0.158 ** (1.331) |
X4 | −0.341 (−0.213) | −0.004 (−0.002) | −0.918 (−0.812) | −0.345 (−0.206) | 0.021 (0.014) | −0.987 (−0.847) | 0.183 (0.101) | 0.328 (0.205) | −0.115 (−0.101) | −0.012 (−0.006) | 0.042 (0.025) | −0.239 (−0.211) | |
X5 | 0.173 (1.348) | 0.135 (1.117) | 0.160 (1.615) | 0.173 (1.326) | 0.135 (1.118) | 0.155 (1.540) | 0.164 (1.245) | 0.135 (1.127) | 0.164 * (1.785) | 0.166 (1.246) | 0.133 (1.114) | 0.152 * (1.654) | 0.167 ** (1.546) |
X6 | 0.0002 (0.010) | −0.001 (−0.067) | 0.003 (0.223) | 0.002 (0.137) | 0.0008 (0.050) | 0.007 (0.568) | 0.003 (0.189) | 0.002 (0.131) | 0.009 (0.699) | ||||
X7 | −0.788 (−0.796) | −0.558 (−0.610) | −1.428 ** (−1.964) | −0.889 (−0.856) | −0.669 (−0.725) | −1.659 ** (−2.142) | −1.538 ** (−2.343) | ||||||
X8 | 0.0291 (0.377) | 0.048 (0.693) | 0.041 (0.734) | ||||||||||
W_y/LAMBDA | −0.033 (−1.072) | −0.637 *** (−2.640) | −0.033 (−1.07) | −0.642 (−2.662) | −0.027 (−0.835) | −0.874 *** (−3.926) | −0.033 (−0.997) | −0.900 *** (−4.095) | −0.786 *** (−4.253) | ||||
R-squared | 0.091 | 0.115 | 0.230 | 0.091 | 0.115 | 0.231 | 0.108 | 0.123 | 0.336 | 0.112 | 0.134 | 0.351 | 0.349 |
Log-likelihood | 89.614 | 90.172 | 91.386 | 89.614 | 90.174 | 91.411 | 90.016 | 90.361 | 92.973 | 90.109 | 90.600 | 93.237 | 93.115 |
AIC | −165.227 | −164.343 | −168.772 | −163.227 | −162.347 | −166.821 | −162.032 | −160.721 | −167.947 | −160.219 | −159.199 | −166.475 | −168.751 |
SC | −153.232 | −150.634 | −156.777 | −149.519 | −146.925 | −153.113 | −146.609 | −143.585 | −152.525 | −143.083 | −140.35 | −149.339 | −151.227 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
---|---|---|---|---|---|---|---|---|---|---|
Model Type | OLS | OLS | SLM | SLM | SEM | SEM | OLS | SLM | SEM | SEM |
Interaction item x (coastal, noncoastal) | 0.042 (1.626) | 0.039 * (1.732) | 0.028 ** (1.325) | 0.043 ** (1.968) | 0.047 ** (1.668) | 3.051 × 10−5 (0.002) | 0.0008 (0.062) | 0.015 (1.131) | ||
X1 | 0.005 (0.087) | 0.018 (0.352) | 0.004 (0.082) | 0.008 (0.138) | 0.025 (0.462) | −0.026 (−0.520) | ||||
X2 | 0.0592 (1.045) | 0.0419 (0.777) | 0.051 (1.079) | 0.036 (0.631) | 0.015 (0.275) | 0.057 (1.161) | ||||
X3 | 0.229 * (2.022) | 0.178 ** (1.354) | 0.222 ** (2.271) | 0.232 ** (2.215) | 0.270*** (2.856) | 0.342 *** (2.759) | 0.148 (1.383) | 0.147 (1.595) | 0.155 * (1.733) | 0.168 * (1.336) |
X4 | 0.127 (0.069) | 0.152 (0.095) | 0.007 (0.005) | −0.150 (−0.078) | −0.086 (−0.052) | −0.652 (−0.532) | ||||
X5 | 0.214 (1.598) | 0.185 (1.523) | 0.189 * (1.846) | 0.192 * (1.745) | 0.146 (1.103) | 0.113 (0.951) | 0.119 (1.222) | |||
X6 | 0.001 (0.079) | 0.0006 (0.039) | 0.007 (0.474) | 0.005 (0.307) | 0.004 (0.256) | 0.012 (0.863) | ||||
X7 | −1.144 (−1.116) | −0.95 (−1.039) | −1.402 * (−1.717) | −1.301 * (−1.128) | −0.780 (−0.749) | −0.557 (−0.603) | −1.463 * (−1.771) | −1.568 ** (−1.752) | ||
X8 | 0.003 (0.044) | 0.019 (0.275) | −0.006 (−0.084) | 0.030 (0.382) | 0.050 (0.710) | 0.068 (1.109) | ||||
W_y/ LAMBDA | −0.025 (−0.753) | −0.606 ** (−2.491) | −0.634 ** (−1.417) | −0.035 (−1.022) | −0.758 *** (−3.251) | −0.649 *** (−2.216) | ||||
R-squared | 0.164 | 0.153 | 0.175 | 0.164 | 0.286 | 0.278 | 0.093 | 0.115 | 0.266 | 0.259 |
Log-likelihood | 91.337 | 91.216 | 91.617 | 90.324 | 93.091 | 92.913 | 89.658 | 90.170 | 91.694 | 91.688 |
AIC | −162.674 | −164.542 | −161.234 | −166.621 | −166.182 | −168.231 | −159.317 | −158.34 | −163.388 | −164.532 |
SC | −145.538 | −149.383 | −142.385 | −144.873 | −149.046 | −160.876 | −142.181 | −139.491 | −146.252 | −151.343 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
---|---|---|---|---|---|---|---|---|---|---|
Model Type | OLS | OLS | SLM | SLM | SEM | SEM | OLS | SLM | SEM | SEM |
Interaction item x (above subprovincial level, prefecture level) | 0.036 (1.537) | 0.040 ** (1.979) | 0.041 ** (1.996) | 0.042 ** (2.164) | 0.032 *** (2.667) | −0.0007 (−0.039) | −0.003 (−0.187) | 0.013 (0.885) | ||
X1 | 0.007 (0.131) | 0.029 (0.591) | −0.008 (−0.162) | 0.009 (0.150) | 0.030 (0.531) | −0.019 (−0.377) | ||||
X2 | 0.054 (0.956) | 0.028 (0.543) | 0.066 (1.400) | 0.036 (0.622) | 0.013 (0.232) | 0.049 (1.005) | ||||
X3 | 0.212 * (1.923) | 0.342 ** (1.824) | 0.218 ** (2.323) | 0.165 ** (2.543) | 0.244 *** (2.835) | 0.324 *** (2.556) | 0.149 (1.390) | 0.150 (1.633) | 0.167 * (1.900) | 0.158 * (1.879) |
X4 | −0.245 (−0.132) | −0.179 (−0.114) | −0.568 (−0.473) | −0.160 (−0.083) | −0.129 (−0.078) | −0.470 (−0.367) | ||||
X5 | 0.185 (1.420) | 0.147 (1.281) | 0.155 (1.626) | 0.146 (1.096) | 0.110 (0.923) | 0.129 (1.304) | ||||
X6 | −0.011 (−0.553) | −0.015 (−0.849) | −0.010 (−0.596) | 0.005 (0.288) | 0.003 (0.202) | 0.017 (1.128) | ||||
X7 | −0.852 (−0.847) | −0.577 (−0.653) | −1.461 * (−1.832) | −1.415 * (−1.367) | −0.775 (−0.739) | −0.531 (−0.568) | −1.394 * (−1.665) | −1.495 ** (−1.564) | ||
X8 | 0.033 (0.433) | 0.057 (0.858) | 0.045 (0.762) | 0.030 (0.385) | 0.050 (0.719) | 0.048 (0.787) | ||||
W_y/ LAMBDA | −0.044 (−1.337) | −0.713 *** (−3.015) | −0.624 *** (−2.014) | −0.035 (−1.034) | −0.694 *** (−2.916) | −0.558 *** (−2.815) | ||||
R-squared | 0.157 | 0.148 | 0.192 | 0.189 | 0.314 | 0.303 | 0.093 | 0.116 | 0.247 | 0.236 |
Log-likelihood | 91.163 | 91.123 | 92.035 | 91.887 | 93.361 | 93.245 | 89.659 | 90.186 | 91.559 | 91.448 |
AIC | −162.326 | −161.332 | −162.069 | −163.872 | −166.721 | −167.342 | −159.319 | −158.371 | −163.118 | −164.223 |
SC | −145.191 | −146.761 | −143.22 | −144.234 | −149.585 | −159.342 | −142.183 | −139.522 | −145.982 | −146.897 |
Region | Shanghai | Jiangsu | Zhejiang | Anhui | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
Interaction items | 0.029 ** (2.463) | 0.027 ** (2.354) | 0.032 ** (2.523) | 0.035 ** (2.256) | 0.017 (1.312) | 0.028 ** (2.034) | 0.047 ** (2.643) | |||||
Interaction items × provincial characteristics | 0.0004 (0.013) | 0.022 (0.661) | 0.001 (0.069) | −0.019 (−1.004) | 0.036 (2.124) | 0.02 (1.199) | 0.022 (0.965) | −0.006 (−0.200) | ||||
X1 | −0.004 (−0.085) | −0.044 (−0.898) | −0.005 (−0.103) | −0.021 (−0.436) | −0.024 (−0.507) | −0.034 (−0.727) | 0.003 (0.061) | −0.038 (−0.756) | ||||
X2 | 0.042 (0.857) | 0.073 (1.577) | 0.042 (0.861) | 0.063 (1.376) | 0.059 (1.267) | 0.068 (1.492) | 0.043 (0.887) | 0.070 (1.513) | ||||
X3 | 0.181 * (1.907) | 0.208 ** (2.396) | 0.212 ** (2.497) | 0.181 (2.068) | 0.191 ** (2.399) | 0.123 *** (2.965) | 0.256 *** (2.920) | 0.233 *** (2.635) | 0.245 *** (2.687) | 0.148 (1.591) | 0.195 ** (2.084) | 0.356 ** (2.439) |
X4 | −0.619 (−0.458) | −0.334 (−0.295) | −0.636 (−0.470) | 0.219 (0.180) | 0.347 (0.271) | 0.295 (0.245) | −0.513 (−0.397) | −0.248 (−0.219) | ||||
X5 | 0.125 (1.159) | 0.137 (1.455) | 0.125 (1.227) | 0.153 * (1.677) | 0.678 * (1.753) | 0.181 * (1.848) | 0.180 * (1.926) | 0.107 * (1.967) | 0.107 (1.060) | 0.158 (1.631) | ||
X6 | 0.011 (0.804) | 0.008 (0.591) | 0.012 (0.814) | 0.005 (0.404) | 0.011 (0.847) | 0.009 (0.726) | 0.006 (0.419) | 0.010 (0.723) | ||||
X7 | −1.245 (−1.393) | −1.857 ** (−2.264) | −1.556 ** (−2.245) | −1.246 (−1.460) | −1.638 ** (−2.131) | −1.429 ** (−2.143) | −1.456 * (−1.834) | −1.600 ** (−2.094) | −1.769 ** (−2.876) | −1.371 (−1.628) | −1.651 ** (−2.132) | −1.543 ** (−2.862) |
X8 | 0.0490 (0.775) | 0.039 (0.688) | 0.051 (0.755) | 0.005 (0.079) | −0.005 (−0.0761) | 0.004 (0.061) | 0.040 (0.636) | 0.043 (0.758) | ||||
W_y/LAMBDA | −0.578 ** (−2.363) | −0.91 *** (−4.168) | −0.989 *** (−3.337) | −0.583 (−2.387) | −0.878 *** (−3.955) | −0.865 *** (−3.532) | −0.757 *** (−3.244) | −0.889 *** (−4.024) | −0.874 *** (−3.642) | −0.640 (−2.651) | −0.904 *** (−4.120) | −0.766 *** (−4.874) |
Model type | SEM | SEM | SEM | SEM | SEM | SEM | SEM | SEM | SEM | SEM | SEM | SEM |
R-squared | 0.213 | 0.361 | 0.349 | 0.214 | 0.362 | 0.351 | 0.318 | 0.371 | 0.369 | 0.241 | 0.353 | 0.346 |
Log-likelihood | 91.244 | 93.454 | 92.542 | 91.246 | 93.733 | 93,499 | 93.207 | 93.943 | 93.876 | 91.684 | 93.257 | 93.123 |
AIC | −162.488 | −164.908 | −165.459 | −162.492 | −165.466 | −166.342 | −166.414 | −165.886 | −166.324 | −163.368 | −164.515 | −164.652 |
SC | −145.352 | −146.058 | −147.112 | −145.357 | −146.617 | −147.325 | −149.278 | −147.037 | −148.235 | −146.232 | −145.665 | −46.312 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Ni, D.; Zhu, S.; Ying, Y.; Shen, M. Does the National Credit Demonstration Policy Affect Urban Green Economy Efficiency? Evidence from the Yangtze River Delta Region of China. Int. J. Environ. Res. Public Health 2022, 19, 9926. https://doi.org/10.3390/ijerph19169926
Chen H, Ni D, Zhu S, Ying Y, Shen M. Does the National Credit Demonstration Policy Affect Urban Green Economy Efficiency? Evidence from the Yangtze River Delta Region of China. International Journal of Environmental Research and Public Health. 2022; 19(16):9926. https://doi.org/10.3390/ijerph19169926
Chicago/Turabian StyleChen, Haisheng, Dingqing Ni, Shuiping Zhu, Ying Ying, and Manhong Shen. 2022. "Does the National Credit Demonstration Policy Affect Urban Green Economy Efficiency? Evidence from the Yangtze River Delta Region of China" International Journal of Environmental Research and Public Health 19, no. 16: 9926. https://doi.org/10.3390/ijerph19169926
APA StyleChen, H., Ni, D., Zhu, S., Ying, Y., & Shen, M. (2022). Does the National Credit Demonstration Policy Affect Urban Green Economy Efficiency? Evidence from the Yangtze River Delta Region of China. International Journal of Environmental Research and Public Health, 19(16), 9926. https://doi.org/10.3390/ijerph19169926