Association between 24-Hour Movement Behaviors and Smartphone Addiction among Adolescents in Foshan City, Southern China: Compositional Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. 24-Hour Movement Behaviors Assessment
2.3. Smartphone Addiction Assessment
2.4. Other Variables Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, N.; He, J.; Wang, Z.; Miao, R.; Leslie, E.; Xu, F. The prevalence of sufficient physical activity among primary and high school students in Mainland China: A systematic review and meta-analysis. Public Health 2018, 163, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.; Ainsworth, B.E.; Sallis, J.F.; Hagströmer, M.; Craig, C.L.; Bull, F.C.; IPS Group. The descriptive epidemiology of sitting. A 20-country com-parison using the International Physical Activity Questionnaire (IPAQ). Am. J. Prev. Med. 2011, 41, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Keyes, K.M.; Maslowsky, J.; Hamilton, A.; Schulenberg, J. The Great Sleep Recession: Changes in Sleep Duration among US Adolescents, 1991–2012. Pediatrics 2015, 135, 460–468. [Google Scholar] [CrossRef]
- Sheehan, C.M.; Frochen, S.E.; Walsemann, K.; Ailshire, J.A. Are U.S. adults reporting less sleep?: Findings from sleep duration trends in the National Health Interview Survey, 2004–2017. Sleep 2018, 42, zsy221. [Google Scholar] [CrossRef]
- Matricciani, L.; Olds, T.; Petkov, J. In search of lost sleep: Secular trends in the sleep time of school-aged children and adolescents. Sleep Med. Rev. 2012, 16, 203–211. [Google Scholar] [CrossRef]
- Colley, R.C.; Garriguet, D.; Janssen, I.; Craig, C.L.; Clarke, J.; Tremblay, M.S. Physical activity of Canadian chil-dren and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22, 15–23. [Google Scholar]
- Xiang, M.Q.; Lin, L.; Wang, Z.R.; Li, J.; Xu, Z.; Hu, M. Sedentary Behavior and Problematic Smartphone Use in Chinese Ad-olescents: The Moderating Role of Self-Control. Front. Psychol. 2019, 10, 3032. [Google Scholar] [CrossRef] [PubMed]
- Cyberspace Administration of China. The 47th China Statistical Report on Internet Development. Available online: http://www.cac.gov.cn/ (accessed on 21 May 2021).
- Liu, Q.-Q.; Zhou, Z.-K.; Yang, X.-J.; Kong, F.-C.; Niu, G.-F.; Fan, C.-Y. Mobile phone addiction and sleep quality among Chinese adolescents: A moderated mediation model. Comput. Hum. Behav. 2017, 72, 108–114. [Google Scholar] [CrossRef]
- Liu, Q.-Q.; Zhang, D.-J.; Yang, X.-J.; Zhang, C.-Y.; Fan, C.-Y.; Zhou, Z.-K. Perceived stress and mobile phone addiction in Chinese adolescents: A moderated mediation model. Comput. Hum. Behav. 2018, 87, 247–253. [Google Scholar] [CrossRef]
- Chóliz, M. Mobile Phone Addiction: A Point of Issue. Addiction 2010, 105, 373–374. [Google Scholar] [CrossRef]
- Toda, M.; Ezoe, S.; Nishi, A.; Mukai, T.; Goto, M.; Morimoto, K. Mobile Phone Dependence of Female Students and Perceived Parental Rearing Attitudes. Soc. Behav. Pers. Int. J. 2008, 36, 765–770. [Google Scholar] [CrossRef]
- Bianchi, A.; Phillips, J.G. Psychological Predictors of Problem Mobile Phone Use. CyberPsychol. Behav. 2005, 8, 39–51. [Google Scholar] [CrossRef]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Cazzulino, F.; Burke, R.V.; Muller, V.; Arbogast, H.; Upperman, J.S. Cell Phones and Young Drivers: A Systematic Review Regarding the Association between Psychological Factors and Prevention. Traffic Inj. Prev. 2013, 15, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Min, J.Y.; Kim, H.J.; Min, K.B. Accident risk associated with smartphone addiction: A study on university students in Korea. J. Behav. Addict. 2017, 6, 699–707. [Google Scholar] [CrossRef]
- Hawi, N.S.; Samaha, M. Relationships among smartphone addiction, anxiety, and family relations. Behav. Inf. Technol. 2017, 36, 1046–1052. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, M.; Wang, X.; Xie, X.; Wang, Y.; Lei, L. Peer relationship and adolescent smartphone addiction: The mediating role of self-esteem and the moderating role of the need to belong. J. Behav. Addict. 2017, 6, 708–717. [Google Scholar] [CrossRef]
- Polero, P.; Rebollo-Seco, C.; Adsuar, J.C.; Pérez-Gómez, J.; Rojo-Ramos, J.; Manzano-Redondo, F.; Garcia-Gordillo, M.; Carlos-Vivas, J. Physical Activity Recommendations during COVID-19: Narrative Review. Int. J. Environ. Res. Public Health 2020, 18, 65. [Google Scholar] [CrossRef]
- Qin, F.; Song, Y.; Nassis, G.P.; Zhao, L.; Dong, Y.; Zhao, C.; Feng, Y.; Zhao, J. Physical Activity, Screen Time, and Emotional Well-Being during the 2019 Novel Coronavirus Outbreak in China. Int. J. Environ. Res. Public Health 2020, 17, 5170. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, X. Self-control and problematic mobile phone use in Chinese college students: The mediating role of mobile phone use patterns. BMC Psychiatry 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Boumosleh, J.M.; Jaalouk, D. Depression, anxiety, and smartphone addiction in university students—A cross sectional study. PLoS ONE 2017, 12, e0182239. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-E.; Kim, J.-W.; Jee, Y.-S. Relationship between smartphone addiction and physical activity in Chinese international students in Korea. J. Behav. Addict. 2015, 4, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Tan, G.-X.; Li, Y.-X.; Liu, H.-Y.; Wang, S.-T. Physical Exercise Decreases the Mobile Phone Dependence of University Students in China: The Mediating Role of Self-Control. Int. J. Environ. Res. Public Health 2019, 16, 4098. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Carson, V.; Gray, C.E.; Tremblay, M.S. Importance of All Movement Behaviors in a 24 Hour Period for Overall Health. Int. J. Environ. Res. Public Health 2014, 11, 12575–12581. [Google Scholar] [CrossRef] [PubMed]
- Pedišić, Ž.; Dumuid, D.; Olds, T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiol. Int. J. Fundam. Appl. Kinesiol. 2017, 49, 252–269. [Google Scholar]
- Aitchinson, J. The Statistical Analysis of Compositional Data; Blackburn Press: London, UK, 2003. [Google Scholar]
- Pedišić, Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behavior research—The focus should shift to the balance between sleep, sedentary behavior, standing and activity. Kinesiol. Int. J. Fundam. Appl. Kinesiol. 2014, 46, 135–146. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S516. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, D.-J.; Cho, H.; Yang, S. The Smartphone Addiction Scale: Development and Validation of a Short Version for Adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef]
- Luk, T.T.; Wang, M.P.; Shen, C.; Wan, A.; Chau, P.H.; Oliffe, J.; Viswanath, K.; Chan, S.S.-C.; Lam, T.H. Short version of the Smartphone Addiction Scale in Chinese adults: Psychometric properties, sociodemographic, and health behavioral correlates. J. Behav. Addict. 2018, 7, 1157–1165. [Google Scholar] [CrossRef]
- Wang, Z.Y. Chinese version of Zung’s self-rating anxiety scale. Shanghai Psychiatry 1984, 2, 73–74. [Google Scholar]
- Mo, L.F. Definition of Habit of Student Physical Training; Journal of Jianghan University: Wuhan, China, 2007; pp. 91–93. [Google Scholar]
- Chastin, S.F.M.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach. PLoS ONE 2015, 10, e0139984. [Google Scholar] [CrossRef] [PubMed]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric Logratio Transformations for Compositional Data Analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Dumuid, D.; Željko, P.; Stanford, T.E.; Martín-Fernández, J.A.; Hron, K.; Maher, C.A.; Lewis, L.K.; Olds, T. The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat. Methods Med. Res. 2019, 28, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.A.; Taylor, J.R.; Potenza, M.N. Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. Am. J. Psychiat. 2003, 160, 1041–1052. [Google Scholar] [CrossRef]
- Lopez, F.; Honrubia, S.; Freixa, B.; Gibson, W. Prevalence of problematic mobile phone use in British adolescents. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 91–98. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, T.; Yang, L.; Loprinzi, P.D. Exercise as an Alternative Approach for Treating Smartphone Addiction: A Systematic Review and Meta-Analysis of Random Controlled Trials. Int. J. Environ. Res. Public Health 2019, 16, 3912. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Cadenas-Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora-Gonzalez, J.; Migueles, J.H.; Molina-García, P.; Henriksson, H.; Mena-Molina, A.; Martínez-Vizcaíno, V.; et al. Role of Physical Activity and Sedentary Behavior in the Mental Health of Preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef]
- Demirci, K.; Akgönül, M.; Akpinar, A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J. Behav. Addict. 2015, 4, 85–92. [Google Scholar] [CrossRef]
- Elhai, J.D.; Yang, H.; Mckay, D.; Asmundson, G.J.G. COVID-19 anxiety symptoms associated with problematic smartphone use severity in Chinese adults. J. Affect. Disord. 2020, 274, 576–582. [Google Scholar] [CrossRef]
- Kim, E.; Koh, E. Avoidant attachment and smartphone addiction in college students: The mediating effects of anxiety and self-esteem. Comput. Hum. Behav. 2018, 84, 264–271. [Google Scholar] [CrossRef]
- Çelik, O.T.; Konan, N. The Mediator Role of Interaction Anxiety in the Relationship between Social Support Perception and Smartphone Addiction. J. Educ. Futur. 2019, 63–75. [Google Scholar] [CrossRef]
- Huckins, J.F.; Dasilva, A.W.; Wang, W.; Hedlund, E.; Rogers, C.; Nepal, S.K.; Wu, J.; Obuchi, M.; Murphy, E.I.; Meyer, M.L.; et al. Mental Health and Behavior of College Students during the Early Phases of the COVID-19 Pandemic: Longitudinal Smartphone and Ecological Momentary Assessment Study. J. Med. Internet Res. 2020, 22, e20185. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xia, N.; Zou, Y.; Chen, Z.; Wen, Y. Smartphone addiction may be associated with adolescent hypertension: A cross-sectional study among junior school students in China. BMC Pediatr. 2019, 19, 310. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.; Skene, D.; Arendt, J.; Cade, J.; Grant, P.J.; Hardie, L.J. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr. Rev. 2016, 37, 584–608. [Google Scholar] [CrossRef] [PubMed]
- Kuzik, N.; Poitras, V.J.; Tremblay, M.S.; Lee, E.-Y.; Hunter, S.; Carson, V. Systematic review of the relationships between combinations of movement behaviours and health indicators in the early years (0–4 years). BMC Public Health 2017, 17, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.S.; Bevilacqua, G.G.; Coimbra, D.R.; Andrade, A. Impact of Problematic Smartphone Use on Mental Health of Adolescent Students: Association with Mood, Symptoms of Depression, and Physical Activity. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 619–626. [Google Scholar] [CrossRef]
- Lemola, S.; Perkinson-Gloor, N.; Brand, S.; Dewald-Kaufmann, J.F.; Grob, A. Adolescents’ Electronic Media Use at Night, Sleep Disturbance, and Depressive Symptoms in the Smartphone Age. J. Youth Adolesc. 2014, 44, 405–418. [Google Scholar] [CrossRef]
- Randler, C.; Wolfgang, L.; Matt, K.; Demirhan, E.; HORZUM, M.B.; Beşoluk, Ş. Smartphone addiction proneness in relation to sleep and morningness–eveningness in German adolescents. J. Behav. Addict. 2016, 5, 465–473. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Chen, K.-L.; Yang, S.-Y.; Lin, P.-H. Relationship of sleep quality, smartphone dependence, and health-related behaviors in female junior college students. PLoS ONE 2019, 14, e0214769. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.-J.; Park, C.-S.; Kim, B.-J.; Lee, C.-S.; Cha, B.; Lee, D.; Choi, J.-W.; Lee, Y.-J.; Seo, J. The Mediating Effect of Eveningness on the Indirect Relationships between Shorter Sleep Duration, Inattention, Depression with Smartphone Addiction Tendency. Chronobiol. Med. 2020, 2, 32–40. [Google Scholar] [CrossRef]
- Loureno, C.; Souza, T.; Mendes, E.L. Relationship between smartphone use and sedentary behavior: A school-based study with adolescents. Rev. Bras. De Ativ. Física Saúde 2019, 24, 1–8. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Kong, Z.; Zhang, Y.; Zhuang, J. Prevalence of physical fitness in Chinese school-aged children: Findings from the 2016 Physical Activity and Fitness in China—The Youth Study. J. Sport Health Sci. 2017, 6, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor Gorber, S.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Gruber, R.; Janson, K.; et al. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl. Physiol. Nutr. Metab. 2016, 41 (Suppl. S3), S311–S327. [Google Scholar] [CrossRef] [PubMed]
- Okely, A.D.; Ghersi, D.; Hesketh, K.D.; Santos, R.; Loughran, S.P.; Cliff, D.P.; Shilton, T.; Grant, D.; Jones, R.A.; Stanley, R.M.; et al. A collaborative approach to adopting/adapting guidelines—The Australian 24-Hour Movement Guidelines for the early years (Birth to 5 years): An integration of physical activity, sedentary behavior, and sleep. BMC Public Health 2017, 17, 167–190. [Google Scholar] [CrossRef]
- New Zealand Ministry of Health. Sit Less, Move More, Sleep Well: Physical Activity Guidelines for Children and Young People. Available online: http://www.health.govt.nz/ (accessed on 13 October 2021).
- Draper, C.E.; Tomaz, S.A.; Biersteker, L.; Cook, C.J.; Couper, J.; de Milander, M.; Flynn, K.; Giese, S.; Krog, S.; Lambert, E.V.; et al. The South African 24-Hour Movement Guidelines for Birth to 5 Years: An Integration of Physical Activity, Sitting Behavior, Screen Time, and Sleep. J. Phys. Act. Health 2020, 17, 109–119. [Google Scholar] [CrossRef]
- UKK Institute for Health Promotion Research. Aikuisten Liikkumisen Suositus [Movement Recommendations for Adults]. Available online: https://www.ukkinstituutti.fi/ (accessed on 14 December 2021).
- Jurakic, D.; Pedišić, Ž. Croatian 24-Hour guidelines for physical activity, sedentary behaviour, and sleep: A proposal based on a systematic review of literature. Medicus 2019, 282, 143–153. [Google Scholar]
- Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age; World Health Organization: Geneva, Switzerland, 2019.
- Dumuid, D.; Lewis, L.; Olds, T.; Maher, C.; Bondarenko, C.; Norton, L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis. Maturitas 2018, 110, 104–110. [Google Scholar] [CrossRef]
Variables | N (%) | SAS-SV Scores (Mean ± SD) | F | p |
---|---|---|---|---|
Sex | 1.08 | 0.299 | ||
Boy | 575 (43.46) | 31.49 ± 10.81 | ||
Girl | 748 (56.54) | 32.06 ± 8.87 | ||
Age | 6.76 | <0.001 | ||
15 years | 250 (18.90) | 33.10 ± 9.18 | ||
16 years | 494 (37.34) | 32.35 ± 10.05 | ||
17 years | 399 (30.16) | 31.56 ± 9.34 | ||
>17 years | 180 (13.61) | 29.10 ± 10.20 | ||
Grade | 15.92 | <0.001 | ||
10th | 553 (41.80) | 33.09 ± 9.67 | ||
11th | 500 (37.79) | 31.89 ± 9.73 | ||
12th | 270 (20.41) | 29.05 ± 9.47 | ||
Only child or not | 0.58 | 0.447 | ||
Yes | 495 (37.41) | 31.55 ± 9.50 | ||
No | 828 (62.59) | 31.97 ± 9.92 | ||
BMI | 1.11 | 0.345 | ||
Underweight | 362 (27.36) | 32.37 ± 9.62 | ||
Normal weight | 745 (56.31) | 31.72 ± 9.87 | ||
Overweight | 109 (8.24) | 31.94 ± 9.05 | ||
Obese | 107 (8.09) | 30.46 ± 10.15 | ||
Had regular exercise before the epidemic | 8.68 | 0.003 | ||
Yes | 739 (55.86) | 31.11 ± 9.97 | ||
No | 584 (44.14) | 32.70 ± 9.42 | ||
Father’s education level | 1.66 | 0.175 | ||
Junior high school and below | 455 (34.39) | 32.35 ± 9.71 | ||
High school | 491 (37.11) | 31.83 ± 9.78 | ||
College or higher | 377 (28.50) | 31.14 ± 9.73 | ||
Mother’s education level | 1.17 | 0.319 | ||
Junior high school and below | 556 (41.03) | 32.17 ± 9.78 | ||
High school | 465 (35.15) | 31.55 ± 9.79 | ||
College | 302 (22.82) | 31.55 ± 9.53 | ||
Parents working on the front line of the epidemic? | 3.07 | 0.080 | ||
Yes | 68 (5.14) | 29.79 ± 9.32 | ||
No | 1255 (94.86) | 31.92 ± 9.78 | ||
Anxiety | 61.83 | <0.001 | ||
No anxiety | 1015 (76.72) | 30.13 ± 9.03 | ||
Mild anxiety | 222 (16.78) | 35.37 ± 8.52 | ||
Moderate anxiety | 56 (4.23) | 41.70 ± 10.66 | ||
Severe anxiety | 30 (2.27) | 43.90 ± 13.70 | ||
Smartphone addiction | 10.65 | <0.001 | ||
Addiction | 671 (50.72) | 39.14 ± 6.68 | ||
Non-addiction | 652 (49.28) | 24.27 ± 5.94 |
Geometric Mean | Arithmetic Mean (min) | |||||
---|---|---|---|---|---|---|
Addiction | Non-Addiction | Total | Addiction | Non-Addiction | Total | |
SLP | 517.82 (33.36) | 531.65 (36.44) | 524.74 (36.44) | 479.14 (33.27) | 481.61 (33.45) | 480.36 (33.36) |
SB | 547.34 (37.04) | 524.16 (37.21) | 535.82 (37.21) | 546.52 (37.95) | 519.77 (36.10) | 533.34 (37.04) |
LPA | 366.34 (28.08) | 374.69 (25.73) | 370.51 (25.73) | 394.32 (27.38) | 414.60 (28.79) | 404.32 (28.08) |
MVPA | 8.50 (1.53) | 9.50 (0.62) | 8.93 (0.62) | 20.02 (1.39) | 24.02 (1.67) | 21.98 (1.53) |
SLP | SB | LPA | MVPA | |
---|---|---|---|---|
Total | ||||
SLP | 0.00 | 0.14 | 0.21 | 1.24 |
SB | 0.14 | 0.00 | 0.56 | 1.70 |
LPA | 0.21 | 0.56 | 0.00 | 1.74 |
MVPA | 1.24 | 1.70 | 1.74 | 0.00 |
Addiction | ||||
SLP | 0.00 | 0.13 | 0.22 | 1.31 |
SB | 0.13 | 0.00 | 0.58 | 1.67 |
LPA | 0.22 | 0.58 | 0.00 | 1.74 |
MVPA | 1.31 | 1.67 | 1.74 | 0.00 |
Non-addiction | ||||
SLP | 0.00 | 0.16 | 0.21 | 1.15 |
SB | 0.16 | 0.00 | 0.58 | 1.57 |
LPA | 0.21 | 0.58 | 0.00 | 1.84 |
MVPA | 1.15 | 1.57 | 1.84 | 0.00 |
ilr Coordinates | SE | t | p | Standardized | |
---|---|---|---|---|---|
ilr1-SLP | −3.641 | 0.755 | −4.821 | <0.001 | −0.416 |
ilr1-SB | 2.641 | 0.601 | 4.395 | <0.001 | 0.351 |
ilr1-LPA | 1.454 | 0.350 | 4.154 | <0.001 | 0.125 |
ilr1-MVPA | −0.453 | 0.341 | −3.460 | <0.001 | −0.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Tan, J.; Huang, B.; Cheng, J.; Huang, Y.; Xu, P.; Fang, X.; Li, H.; Zhang, D.; Gao, Y. Association between 24-Hour Movement Behaviors and Smartphone Addiction among Adolescents in Foshan City, Southern China: Compositional Data Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9942. https://doi.org/10.3390/ijerph19169942
Ren Z, Tan J, Huang B, Cheng J, Huang Y, Xu P, Fang X, Li H, Zhang D, Gao Y. Association between 24-Hour Movement Behaviors and Smartphone Addiction among Adolescents in Foshan City, Southern China: Compositional Data Analysis. International Journal of Environmental Research and Public Health. 2022; 19(16):9942. https://doi.org/10.3390/ijerph19169942
Chicago/Turabian StyleRen, Zhiqiang, Jianyi Tan, Baoying Huang, Jinqun Cheng, Yanhong Huang, Peng Xu, Xuanbi Fang, Hongjuan Li, Dongmei Zhang, and Yanhui Gao. 2022. "Association between 24-Hour Movement Behaviors and Smartphone Addiction among Adolescents in Foshan City, Southern China: Compositional Data Analysis" International Journal of Environmental Research and Public Health 19, no. 16: 9942. https://doi.org/10.3390/ijerph19169942
APA StyleRen, Z., Tan, J., Huang, B., Cheng, J., Huang, Y., Xu, P., Fang, X., Li, H., Zhang, D., & Gao, Y. (2022). Association between 24-Hour Movement Behaviors and Smartphone Addiction among Adolescents in Foshan City, Southern China: Compositional Data Analysis. International Journal of Environmental Research and Public Health, 19(16), 9942. https://doi.org/10.3390/ijerph19169942