Six HIT Sessions Improve Cardiorespiratory Fitness and Metabolic Flexibility in Insulin Resistant and Insulin Sensitive Adolescents with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design, Setting and Ethics
2.2. Sample Size
2.3. Participants
2.4. Outcomes Evaluations
2.5. Anthropometry and Body Composition
2.6. Lipid and Glucose Profile
2.7. Cardiopulmonary Test
2.8. Indirect Calorimetry
2.9. Intervention: High-Intensity Exercise Training (HIT)
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-intensity interval training interventions in children and adolescents: A systematic review. Sports Med. 2017, 47, 2363–2674. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-Risk). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Tornquist, D.; Tornquist, L.; Reuter, C.P.; Horta, J.A.; Renner, J.D.P.; Burgos, M.S. Effects of an interdisciplinary intervention on insulin resistance indicators in overweight adolescents. J. Hum. Growth Dev. 2020, 30, 274–282. [Google Scholar] [CrossRef]
- Kang, Y.E.; Kim, J.M.; Joung, K.H.; Lee, J.H.; You, B.R.; Choi, M.J.; Ryu, M.J.; Ko, Y.B.; Lee, M.A.; Lee, J.; et al. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction. PLoS ONE 2016, 11, e0154003. [Google Scholar] [CrossRef] [PubMed]
- Karstoft, K.; Pedersen, B.K. Exercise and type 2 diabetes: Focus on metabolism and inflammation. Immunol Cell Biol. 2015, 94, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Prado, W.L.D.; Lofrano, M.C.; Oyama, L.M.; Dâmaso, A.R. Obesity and inflammatory adipokines: Practical implications for exercise prescription. J. Pediatr. 2009, 85, 378–383. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, H.; Kong, Z.; Shi, Q.; Tong, T.K.; Nie, J. Twelve weeks of low volume sprint interval training improves cardio-metabolic health outcomes in overweight females. J. Sports Sci. 2019, 11, 1257–1264. [Google Scholar] [CrossRef]
- Bond, B.; Weston, K.L.; Williams, C.A.; Barker, A.R. Perspectives on high-intensity interval exercise for health promotion in children and adolescents. Open Access J. Sports Med. 2017, 8, 243–265. [Google Scholar] [CrossRef]
- Costigan, A.S.; Eather, N.; Plotnikoff, R.C.; Taaffe, D.R.; Lubans, D.R. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1253–1261. [Google Scholar] [CrossRef]
- Logan, G.R.; Harris, N.; Duncan, S.; Schofield, G. A review of adolescent high-intensity interval training. Sports Med. 2014, 44, 1071–1085. [Google Scholar] [CrossRef]
- Zwinkels, M.; Verschuren, O.; de Groot, J.F.; Backx, F.J.G.; Wittink, H.; Visser-Meily, A.; Takken, T. Effects of high-intensity interval training on fitness and health in youth with physical disabilities. Pediatr. Phys. Ther. 2019, 31, 84–93. [Google Scholar] [CrossRef]
- Little, J.P.; Safdar, A.; Wilkin, G.P.; Tarnopolsky, M.A.; Gibala, M.J. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. J. Physiol. 2010, 588, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Marquezi, M.L.; Agostinho, C.F.M.; Lima, F.R.; Aparecido, J.M.L.; Cascapera, M.S. Six hit treadmill sessions improve lipidoxidation and ventilatory threshold intensities. Rev. Bras. Med. Esporte 2019, 25, 328–332. [Google Scholar] [CrossRef]
- Prada, V.G.; Ortega, J.F.; Jimenez, M.R.; Palomo, F.M.; Pallares, J.G.; Rodriguez, R.M. Training intensity relative to ventilatory thresholds determines cardiorespiratory fitness improvements in sedentary adults with obesity. Eur. J. Sport Sci. 2019, 19, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Masurier, J.; Baquet, G.; Timmons, B.W.; Pereira, B.; Berthoin, S.; Duclos, M.; Aucouturier, J. High-intensity interval training in overweight and obese children and adolescents: Systematic review and meta-analysis. J. Sports Med. Phys. Fit. 2019, 59, 310–324. [Google Scholar] [CrossRef]
- Boutron, I.; Altman, D.G.; Moher, D.; Schulz, K.F.; Ravaud, P. CONSORT Statement for Randomized Trials of Nonpharmacologic Treatments: A 2017 Update and a CONSORT Extension for nonpharmacologic trial abstracts. Ann. Inter. Med. 2017, 167, 40–47. [Google Scholar] [CrossRef]
- Barker, A.R.; Day, J.; Smith, A.; Bond, B.; Williams, A.C. The influence of 2 weeks of low-volume high-intensity interval training on health outcomes in adolescent boys. J. Sports Sci. 2014, 32, 757–765. [Google Scholar] [CrossRef]
- Lopes, N.B.; Conceição, P.P.; Couto, H.L.O.; Santos, T.M.S.; Cascapera, M.S.; Marquezi, M.L.; Bernardes, N.; Aparecido, J.M. Respiratory mechanics in adolescents with different nutritional status. Rev. Bras. de Ciências da Saúde 2021, 25, 711–720. Available online: https://periodicos.ufpb.br/ojs2/index.php/rbcs/article/view/58927 (accessed on 22 May 2022).
- Friedewald, W.T.; Levy, R.J.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. Available online: https://pubmed.ncbi.nlm.nih.gov/4337382 (accessed on 16 June 2022). [CrossRef]
- Gobato, A.O.; Vasques, A.C.J.; Zambon, M.P.; Filho, A.A.B.; Hessel, G. Metabolic syndrome and insulin resistance in obese adolescents. Rev. Paul. Pediatr. 2014, 32, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Caiozzo, V.J.; Davis, J.A.; Ellis, J.F.; Azus, J.L.; Vandagriff, R.; Prietto, C.A.; McMaster, W.C. A comparison of gas exchange indices used to detect the anaerobic threshold. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982, 53, 1184–1189. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1985, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martin, A.; Dumortier, M.; Raynaud, E.; Brun, J.F.; Fédou, C.; Bringer, J.; Mercier, J. Balance of substrate oxidation during submaximal exercise in lean and obese people. Diabetes Metab. 2001, 27, 466–474. Available online: https://pubmed.ncbi.nlm.nih.gov/11547220 (accessed on 16 June 2022). [PubMed]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, A.C.C.; Roschel, H.; Picanço, A.R.; do Prado, D.M.; Villares, S.M.; de Sá Pinto, A.L.; Gualano, B. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS ONE 2012, 7, e42747. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Morrison, K.M.; Riddell, M.C.; Raha, S.; Timmons, B.W. Effect of 7 days of exercise on exogenous carbohydrate oxidation and insulin resistance in children with obesity. Appl. Physiol. Nutr. Metab. 2018, 43, 677–683. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Wolfe, R.R.; Kelley, D.E. Effects of obesity on substrate utilization during exercise. Obes. Res. 2002, 10, 575–584. [Google Scholar] [CrossRef]
- Boisseau, N.; Delamarche, P. Metabolic and hormonal responses to exercise in children and adolescents. Sports Med. 2000, 30, 405–422. [Google Scholar] [CrossRef]
- Kahlhöfer, J.; Lagerpusch, M.; Enderle, J.; Eggeling, B.; Braun, W.; Pape, D.; Müller, M.J.; Bosy-Westphal, A. Carbohydrate intake and glycemic index affect substrate oxidation during a controlled weight cycle in healthy men. Eur. J. Clin. Nutr. 2014, 68, 1060–1066. [Google Scholar] [CrossRef]
- Spriet, L.L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014, 44, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Højlund, K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan. Med. J. 2014, 61, B4890. Available online: https://ugeskriftet.dk/files/scientific_article_files/2018-11/b4890.pdf (accessed on 16 June 2022).
- Goodpaster, B.H.; Sparks, L.M. Metabolic flexibility in health and disease. Cell Metab. 2017, 25, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.; Sharoff, C.; Chipkin, S.R.; Beaudoin, F. Effects of insulin resistance on substrate utilization during exercise in overweight women. J. Appl. Physiol. 2004, 97, 991–997. [Google Scholar] [CrossRef]
- Aparecido, J.M.L.; Frientes, C.S.; Martins, G.L.; Santos, G.C.; Silva, J.D.A.; Rogeri, P.S.; Pires, R.S.; Amorim, T.S.; Silva, T.D.O.; Santo, T.E.; et al. Training Mode Comparisons on Cardiorespiratory, Body Composition and Metabolic Profile Adaptations in Reproductive Age Women: A Systemic Review and Meta-Analysis. Obesities 2022, 2, 222–235. [Google Scholar] [CrossRef]
- Tofiq, K.O.; Bulatova, N.; Kasabri, V.; Suyagh, M.; Halaseh, L.; Alalawi, S. Increased lipocalin-2 vs reduced oxytocin in relation with adiposity, atherogenicity and hematological indices in metabolic syndrome patients with and without prediabetes. Bratisl Lek Listy. 2018, 119, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Moussa, N.M.; Claycombe, K.J. Immunity as a link between obesity and insulin resistance. Mol. Asp. Med. 2012, 33, 26–34. [Google Scholar] [CrossRef]
- Starkoff, B.E.; Eneli, I.U.; Bonny, A.E.; Hoffman, R.P.; Devor, S.T. Estimated aerobic capacity changes in adolescents with obesity following high intensity interval exercise. IJKSS 2014, 2, 1–8. Available online: http://www.journals.aiac.org.au/index.php/IJKSS/article/view/459 (accessed on 17 January 2021).
- Lazzer, S.; Tringali, G.; Caccavale, M.; Micheli, R.; Abbruzzese, L.; Sartorio, A. Effects of high-intensity interval training on physical capacities and substrate oxidation rate in obese adolescents. J. Endocrinol. Investig. 2017, 40, 217–226. [Google Scholar] [CrossRef]
- Jacobs, R.A.; Flück, D.; Bonne, T.C.; Bürgi, S.; Christensen, P.M.; Toigo, M.; Lundby, C. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J. Appl. Physiol. 2013, 115, 785–793. [Google Scholar] [CrossRef]
- Racil, G.; Ounis, O.B.; Hammouda, O.; Kallel, Z.; Zouhal, H.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; MacDonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval trainingin health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. An acute bout of high-intensity interval training increasesthe nuclear abundance of PGC-1αand activates mitochondrial biogenesis in human skeletal muscle. J. Physiol. 2011, 300, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Polak, J.; Moro, C.; Klimcakova, E.; Hejnova, J.; Majercik, M.; Viguerie, N.; Langin, D.; Lafontan, M.; Stich, V.; Berlan, M. Dynamic strength training improves insulin sensitivity and functional balance between adrenergic alpha 2A and beta pathways in subcutaneous adipose tissue of obese subjects. Diabetologia 2005, 48, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, J.; Kiens, B. Regulation and limitations to fatty acid oxidation during exercise. J. Physiol. 2012, 590, 1059–1068. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; Macdonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Rossow, L.; Yan, H.; Fahs, C.A.; Ranadive, S.M.; Agiovlasitis, S.; Wilund, K.R.; Baynard, T.; Fernhall, B. Postexercise hypotension in an endurance-trained population of men and women following high-intensity interval and steady-state cycling. Am. J. Hypertens. 2010, 23, 358–367. [Google Scholar] [CrossRef]
- Chu, L.; Riddell, M.C.; Schneiderman, J.E.; McCrindle, B.W.; Hamilton, J.K. The effect of puberty on fat oxidation rates during exercise in overweight and normal-weight girls. J. Appl. Physiol. 2014, 116, 76–82. [Google Scholar] [CrossRef] [Green Version]
Variables | IR (n = 13) Mean ± SD | IS (n = 12) Mean ± SD | p IR × IS |
---|---|---|---|
Age (years) | 13.08 ± 1.66 | 12.75 ± 1.54 | 0.616 |
Weight (kg) | 77.68 ± 10.66 | 69.11 ± 11.68 | 0.067 |
Height (m) | 1.61 ± 0.07 | 1.58 ± 0.07 | 0.212 |
Body fat (%) | 35.81 ± 4.28 | 30.41 ± 3.61 | 0.002 |
Fat mass (kg) | 27.27 ± 6.61 | 20.41 ± 4.58 | 0.006 |
Fat-free mass (kg) | 49.52 ± 6.55 | 46.46 ± 7.93 | 0.301 |
Basal metabolic rate (kcal) | 1526.08 ± 192.50 | 1412.75 ± 240.59 | 0.205 |
BMI (kg/m2) | 29.95 ± 4.33 | 27.37 ± 3.89 | 0.132 |
zBMI | 2.59 ± 0.42 | 2.34 ± 0.58 | 0.218 |
Total cholesterol (mg/dL) | 157.46 ± 43.43 | 156.54 ± 44.49 | 0.959 |
HDL-Cholesterol (mg/dL) | 44.00 ± 9.73 | 47.00 ± 14.75 | 0.551 |
LDL-Cholesterol (mg/dL) | 93.62 ± 33.53 | 93.00 ± 38.40 | 0.966 |
VLDL-Cholesterol (mg/dL) | 19.54 ± 10.12 | 20.33 ± 6.10 | 0.816 |
Triglycerides (mg/dL) | 97.69 ± 50.61 | 101.67 ± 30.48 | 0.816 |
Fasting glucose (mg/dL) | 87.77 ± 5.82 | 87.00 ± 5.08 | 0.729 |
Fasting insulin (µUI/mL) | 22.10 ± 6.45 | 9.83 ± 3.71 | 0.001 |
HOMA-IR | 4.77 ± 1.33 | 2.11 ± 0.80 | 0.001 |
Variables | IR (n = 13) Mean ± SD | IS (n = 12) Mean ± SD | IR × IS | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | p | Pre | Post | p | p | ||
VO2 (mL/kg/min) | Peak | 26.82 ± 6.62 | 29.77 ± 6.08 | 0.064 | 30.62 ± 3.86 | 30.97 ± 3.88 | 0.583 | 0.567 |
VAT1 | 14.77 ± 6.34 | 17.53 ± 4.21 | 0.125 | 14.84 ± 2.71 | 17.54 ± 3.24 | 0.021 | 0.993 | |
HR (bpm) | Peak | 190.69 ± 15.45 | 185.00 ± 16.99 | 0.063 | 187.33 ± 8.05 | 190.83 ± 10.39 | 0.186 | 0.316 |
VAT1 | 143.62 ± 15.10 | 148.69 ± 16.54 | 0.397 | 129.83 ± 14.48 | 141.75 ± 13.82 | 0.003 | 0.269 | |
V (km/h) | Peak | 8.85 ± 1.28 | 9.85 ± 1.52 | 0.002 | 9.08 ± 0.90 | 10.25 ± 1.21 | 0.001 | 0.473 |
VAT1 | 5.15 ± 0.90 | 6.31 ± 0.75 | 0.005 | 5.08 ± 0.29 | 6.42 ± 0.51 | 0.002 | 0.679 | |
CHOox (g) | 15.16 ± 17.54 | 18.21 ± 11.13 | 0.541 | 12.72 ± 10.84 | 19.86 ± 10.30 | 0.039 | 0.704 | |
LIPox (g) | 8.41 ± 4.56 | 7.29 ± 3.74 | 0.331 | 7.89 ± 3.89 | 5.40 ± 4.62 | 0.078 | 0.269 | |
TTox (g) | 23.57 ± 14.71 | 25.50 ± 8.56 | 0.652 | 20.50 ± 7.64 | 25.26 ± 7.30 | 0.042 | 0.939 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparecido, J.M.L.; Marquezi, M.L.; Couto, H.L.d.O.; Santos, T.M.d.S.; Cruz, A.F.C.; Lopes, N.B.; Cascapera, M.S.; Xavier, V.B.; Kochi, C.; Alves, V.L.d.S.; et al. Six HIT Sessions Improve Cardiorespiratory Fitness and Metabolic Flexibility in Insulin Resistant and Insulin Sensitive Adolescents with Obesity. Int. J. Environ. Res. Public Health 2022, 19, 10568. https://doi.org/10.3390/ijerph191710568
Aparecido JML, Marquezi ML, Couto HLdO, Santos TMdS, Cruz AFC, Lopes NB, Cascapera MS, Xavier VB, Kochi C, Alves VLdS, et al. Six HIT Sessions Improve Cardiorespiratory Fitness and Metabolic Flexibility in Insulin Resistant and Insulin Sensitive Adolescents with Obesity. International Journal of Environmental Research and Public Health. 2022; 19(17):10568. https://doi.org/10.3390/ijerph191710568
Chicago/Turabian StyleAparecido, Juliana Monique Lino, Marcelo Luis Marquezi, Hellyelson Lopes de Omena Couto, Thais Miriã da Silva Santos, Alison Fabiano Cunha Cruz, Nayara Barbosa Lopes, Marcelo Santin Cascapera, Vivian Bertoni Xavier, Cristiane Kochi, Vera Lúcia dos Santos Alves, and et al. 2022. "Six HIT Sessions Improve Cardiorespiratory Fitness and Metabolic Flexibility in Insulin Resistant and Insulin Sensitive Adolescents with Obesity" International Journal of Environmental Research and Public Health 19, no. 17: 10568. https://doi.org/10.3390/ijerph191710568
APA StyleAparecido, J. M. L., Marquezi, M. L., Couto, H. L. d. O., Santos, T. M. d. S., Cruz, A. F. C., Lopes, N. B., Cascapera, M. S., Xavier, V. B., Kochi, C., Alves, V. L. d. S., & Lancha, A. H., Jr. (2022). Six HIT Sessions Improve Cardiorespiratory Fitness and Metabolic Flexibility in Insulin Resistant and Insulin Sensitive Adolescents with Obesity. International Journal of Environmental Research and Public Health, 19(17), 10568. https://doi.org/10.3390/ijerph191710568