Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Location
2.2. Application of Wetting and Drying (W-D) Cycles
2.3. Step of Acquisition and Processing of Microtomographic (μCT) Images
2.4. Calculation of 3D Lacunarity and Multifractal Parameters
2.5. 3D Geometric Parameters of the Porous System
2.6. 3D Normalized Shannon’s Entropy for Pore Space Characterization
2.7. Statistical Analysis
3. Results
3.1. 3D Lacunarity
3.2. 3D Multifractal Spectra Jointly with Multifractal Parameters and Generalized Multifractal Dimensions
3.3. 3D Geometric Parameters
3.4. 3D Normalized Shannon’s Entropy
4. Discussion
4.1. 3D Lacunarity
4.2. 3D Multifractal Spectra with Quantified Parameters and Generalized Multifractal Dimensions
4.3. 3D Geometric Parameters and 3D Normalized Shannon’s Entropy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle, J.R.; Powers, R.F. Forest soils. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Bodner, G.; Scholl, P.; Kaul, H.P. Field quantification of wetting–drying cycles to predict temporal changes of soil pore size distribution. Soil Tillage Res. 2013, 133, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.P. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma 2013, 204, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Hernandez-Ramirez, G.; Quideau, S.; Smith, E.; Janzen, H.; Larney, F.J.; Puurveen, D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric. Ecosyst. Environ. 2017, 248, 123–135. [Google Scholar] [CrossRef]
- Hebb, C.; Schoderbek, D.; Hernandez-Ramirez, G.; Hewins, D.; Carlyle, C.N.; Bork, E. Soil physical quality varies among contrasting land uses in Northern Prairie regions. Agric. Ecosyst. Environ. 2017, 240, 14–23. [Google Scholar] [CrossRef]
- Jarvis, N.; Forkman, J.; Koestel, J.; Kätterer, T.; Larsbo, M.; Taylor, A. Long-term effects of grass-clover leys on the structure of a silt loam soil in a cold climate. Agric. Ecosyst. Environ. 2017, 247, 319–328. [Google Scholar] [CrossRef]
- Carducci, C.E.; Zinn, Y.L.; Rossoni, D.F.; Heck, R.J.; Oliveira, G.C. Visual analysis and X-ray computed tomography for assessing the spatial variability of soil structure in a cultivated Oxisol. Soil Tillage Res. 2017, 173, 15–23. [Google Scholar] [CrossRef]
- Gao, L.; Becker, E.; Liang, G.; Houssou, A.A.; Wu, H.; Wu, X.; Cai, D.; Degré, A. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon. Geoderma 2017, 288, 97–104. [Google Scholar] [CrossRef]
- Cameira, M.R.; Fernando, R.M.; Pereira, L.S. Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil Tillage Res. 2003, 70, 131–140. [Google Scholar] [CrossRef]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Wang, A.N.W.; Smucker, A.J.M.; Rivers, M.L. Long-term differences in tillage and land use affect intra-aggregate pore heterogeneity. Soil Sci. Soc. Am. J. 2011, 75, 1658–1666. [Google Scholar] [CrossRef]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Strudley, M.W.; Green, T.R.; Ascough II, J.C. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Faloye, O.T.; Reinsch, T. Changes in soil structure and pore functions under long term/continuous grassland management. Agric. Ecosyst. Environ. 2021, 314, 107407. [Google Scholar] [CrossRef]
- Budhathoki, S.; Lamba, J.; Srivastava, P.; Williams, C.; Arriaga, F.; Karthikeyan, K.G. Impact of land use and tillage practice on soil macropore characteristics inferred from X-ray computed tomography. Catena 2022, 210, 105886. [Google Scholar] [CrossRef]
- Zhang, S.J.; Tang, Q.; Bao, Y.H.; He, X.B.; Tian, F.X.; Lü, F.Y.; Wang, M.F.; Anjum, R. Effects of seasonal water-level fluctuation on soil pore structure in the Three Gorges Reservoir, China. J. Mt. Sci. 2018, 15, 2192–2206. [Google Scholar] [CrossRef]
- Vogel, H.-J. Scale issues in soil hydrology. Vadose Zone J. 2019, 18, 190001. [Google Scholar] [CrossRef]
- Koestel, J.; Fukumasu, J.; Garland, G.; Larsbo, M.; Svensson, D.N. Approaches to delineate aggregates in intact soil using X-ray imaging. Geoderma 2021, 402, 115360. [Google Scholar] [CrossRef]
- Oldeman, R.A.A. Architectural models, fractals and agroforestry design. Agric. Ecosyst. Environ. 1992, 41, 179–188. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Perfect, E.; Martin, M.A. Fractal geometry applied to soil and related hierarchical systems. Geoderma 2006, 134, 237–239. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Q.; Guo, L.; Feng, Y. Multi-fractal characteristics of three-dimensional distribution of reconstructed soil pores at opencast coal-mine dump based on high-precision CT scanning. Soil Tillage Res. 2018, 182, 144–152. [Google Scholar] [CrossRef]
- Chhabra, A.B.; Meneveau, C.; Jensen, R.V.; Sreenivasan, K.R. Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 1989, 40, 5284–5294. [Google Scholar] [CrossRef] [PubMed]
- Jorge, L.D.C.; Posadas, A.N.D.; Nakamura, R.; Guimarães, M.D.F.; Roda, V.O.; Curmi, P. Aplicação da Técnica Multifractal para Caracterização de Manejo de Solo; Embrapa Instrumentação-Documentos (INFOTECA-E); Brazilian Agricultural Research Corporation: Brasília, Brazil, 2008. [Google Scholar]
- Roy, A.; Perfect, E. Lacunarity analyses of multifractal and natural grayscale patterns. Fractals 2014, 22, 1440003. [Google Scholar] [CrossRef]
- Gould, D.J.; Vadakkan, T.J.; Poché, R.A.; Dickinson, M.E. Multifractal and lacunarity analysis of microvascular morphology and remodeling. Microcirculation 2011, 18, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Martínez, F.S.J.; Martín, M.A.; Caniego, F.J.; Tuller, M.; Guber, A.; Pachepsky, Y. Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures. Geoderma 2010, 156, 32–42. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, T.; Liu, L.; Xiao, C.; He, Y. Effect of sewage irrigation on the CT-measured soil pore characteristics of a clay farmland in Northern China. Int. J. Environ. Res. Public Health 2018, 15, 1043. [Google Scholar] [CrossRef] [PubMed]
- Torre, I.G.; Losada, J.C.; Heck, R.J.; Tarquis, A.M. Multifractal analysis of 3D images of tillage soil. Geoderma 2018, 311, 167–174. [Google Scholar] [CrossRef]
- Borges, J.A.; Pires, L.F.; Cássaro, F.A.; Auler, A.C.; Rosa, J.A.; Heck, R.J.; Roque, W.L. X-ray computed tomography for assessing the effect of tillage systems on topsoil morphological attribute. Soil Tillage Res. 2019, 189, 25–35. [Google Scholar] [CrossRef]
- Pires, L.F.; Roque, W.L.; Rosa, J.A.; Mooney, S.J. 3D analysis of the soil porous architecture under long term contrasting management systems by X-ray computed tomography. Soil Tillage Res. 2019, 191, 197–206. [Google Scholar] [CrossRef]
- Tseng, C.L.; Alves, M.C.; Crestana, S. Quantifying physical and structural soil properties using X-ray microtomography. Geoderma 2018, 318, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff. Simplified Guide to Soil Taxonomy; USDA-Natural Resources Conservation Service: Lincoln, NE, USA, 2013.
- Manzatto, C.V.; Freitas Junior, E.; Peres, J.R. Uso Agrícola dos Solos Brasileiros; Embrapa Solos: Rio de Janeiro, Brazil, 2002. [Google Scholar]
- Sá, J.C.M.; Séguy, L.; Tivet, F.; Lal, R.; Bouzinac, S.; Borszowskei, P.R.; Briedis, C.; dos Santos, J.B.; Hartman, D.C.; Bertoloni, C.G.; et al. Carbon depletion by plowing and its restoration by no-till cropping systems in Oxisols of Subtropical and Tropical agro-ecoregions in Brazil. Land Degrad. Dev. 2015, 26, 531–543. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics; Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods; Black, C.A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 635–662. [Google Scholar]
- Ma, R.; Cai, C.; Li, Z.; Wang, J.; Xiao, T.; Peng, G.; Yang, W. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil Tillage Res. 2015, 149, 1–11. [Google Scholar] [CrossRef]
- Oliveira, J.A.T.; Cássaro, F.A.M.; Pires, L.F. Estimating soil porosity and pore size distribution changes due to wetting-drying cycles by morphometric image analysis. Soil Tillage Res. 2021, 205, 104814. [Google Scholar] [CrossRef]
- Sarkar, N.; Chaudhuri, B.B. An efficient approach to estimate fractal dimension of textural images. Pattern Recognit. 1992, 25, 1035–1041. [Google Scholar] [CrossRef]
- Sarkar, N.; Chaudhuri, B.B. Multifractal and generalized dimensions of gray-tone digital images. Signal Process 1995, 42, 181–190. [Google Scholar] [CrossRef]
- Dong, P. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Comput. Geosci. 2009, 35, 2100–2110. [Google Scholar] [CrossRef]
- Roy, A.; Perfect, E.; Dunne, W.M.; McKay, L.D. A technique for revealing scale-dependent patterns in fracture spacing data. J. Geophys. Res. Solid Earth 2014, 119, 5979–5986. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Giménez, D.; Quiroz, R.; Protz, R. Multifractal Characterization of Soil Pore Systems. Soil Sci. Soc. Am. J. 2003, 67, 1361–1369. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Quiroz, R.; Zorogastua, P.E.; León-Velarde, C. Multifractal characterization of the spatial distribution of ulexite in a Bolivian salt flat. Int. J. Remote Sens. 2005, 26, 615–627. [Google Scholar] [CrossRef]
- Leiva, J.O.; Silva, R.A.; Buss, R.N.; França, V.L.; Souza, A.A.; Siqueira, G.M. Multifractal analysis of soil penetration resistance under sugarcane cultivation. Rev. Bras. Eng. Agríc. Ambient. 2019, 23, 538–544. [Google Scholar] [CrossRef]
- Roque, W.L.; Souza, A.C.A.D.; Barbieri, D.X. The Euler-Poincaré characteristic applied to identify low bone density from vertebral tomographic images. Rev. Bras. Reumatol. 2009, 49, 140–152. [Google Scholar] [CrossRef]
- Roque, W.L.; Arcaro, K.; Lanfredi, R.B. Tortuosidade e conectividade da rede trabecular do rádio distal a partir de imagens microtomográficas. Rev. Bras. de Eng. Biomed. 2012, 28, 116–123. [Google Scholar] [CrossRef]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in Image. J. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.C.; Giménez, D.; Yoon, S.W. Morphology, lacunarity and entropy of intra-aggregate pores: Aggregate size and soil management effects. Geoderma 2008, 146, 83–93. [Google Scholar] [CrossRef]
- Chun, H.C.; Gimenez, D.; Yoon, S.W.; Park, C.W.; Moon, Y.H.; Sonn, Y.K.; Hyun, B.K. Review of soil structure quantification from soil images. Korean J. Soil Sci. Fertil. 2011, 44, 517–526. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, S.K. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study. J. Hydrol. 2013, 496, 122–141. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Luo, L.; Lin, H. Lacunarity and fractal analyses of soil macropores and preferential transport using micro-X-ray computed tomography. Vadose Zone J. 2009, 8, 233–241. [Google Scholar] [CrossRef]
- Monreal, J.C.; Martínez, F.S.J.; Martí, J.I.; Pérez-Gómez, R. Lacunarity of the spatial distributions of soil types in Europe. Vadose Zone J. 2013, 12, 1–9. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Quiroz, R.; Tannús, A.; Crestana, S.; Vaz, C.M. Characterizing water fingering phenomena in soils using magnetic resonance imaging and multifractal theory. Nonlin. Processes Geophys. 2009, 16, 159–168. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Perez-Rodriguez, P.; Juiz, L.V.; Paradelo, M.; Lopez-Periago, J.E. 3D multifractal characterization of computed tomography images of soils under different tillage management: Linking multifractal parameters to physical properties. Geoderma 2020, 363, 114129. [Google Scholar] [CrossRef]
- Wang, D.; Fu, B.; Zhao, W.; Hu, H.; Wang, Y. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China. Catena 2008, 72, 29–36. [Google Scholar] [CrossRef]
- Grant, C.D.; Angers, D.A.; Murray, R.S.; Chantigny, M.H.; Hasanah, U. On the nature of soil aggregate coalescence in an irrigated swelling clay. Soil Res. 2001, 39, 565–575. [Google Scholar] [CrossRef]
- Leij, F.J.; Ghezzehei, T.A.; Or, D. Modeling the dynamics of the soil pore-size distribution. Soil Tillage Res. 2002, 64, 61–78. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Gantzer, C.J.; Anderson, S.H.; Alberts, E.E. Tillage and crop influences on physical properties for an Epiaqualf. Soil Sci. Soc. Am. J. 2004, 68, 567–576. [Google Scholar] [CrossRef]
- Reichert, J.M.; Norton, L.D.; Favaretto, N.; Huang, C.H.; Blume, E. Settling velocity, aggregate stability, and interrill erodibility of soils varying in clay mineralogy. Soil Sci. Soc. Am. J. 2009, 73, 1369–1377. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Zhou, J. Effect of drying–wetting cycles on aggregate breakdown for yellow–brown earths in karst areas. Geoenvironmental Disasters 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Diel, J.; Vogel, H.J.; Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 2019, 345, 63–71. [Google Scholar] [CrossRef]
- Hu, M.G.; Wang, J.F. Multifractal analysis of global total column ozone image. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; pp. 390–393. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.Y.; Liu, Y.; Fan, S.M. Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles. Soil Tillage Res. 2017, 170, 1–13. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.Y.; Qi, W.; Fan, S.M. Morphological approach to quantifying soil cracks: Application to dynamic crack patterns during wetting-drying cycles. Soil Sci. Soc. Am. J. 2018, 82, 757–771. [Google Scholar] [CrossRef]
- Peña-Sancho, C.; López, M.V.; Gracia, R.; Moret-Fernández, D. Effects of tillage on the soil water retention curve during a fallow period of a semiarid dryland. Soil Res. 2016, 55, 114–123. [Google Scholar] [CrossRef]
- Huang, P.M.; Li, Y.; Sumner, M.E. Handbook of Soil Sciences: Properties and Processes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Imhoff, S.; Ghiberto, P.J.; Grioni, A.; Gay, J.P. Porosity characterization of Argiudolls under different management systems in the Argentine Flat Pampa. Geoderma 2010, 158, 268–274. [Google Scholar] [CrossRef]
Coefficient of Determination (r2) | ||
---|---|---|
Management | First Part | Second Part |
F0 | 0.98 | 0.96 |
F12 | 0.98 | 0.99 |
CT0 | 0.99 | 0.97 |
CT12 | 0.99 | 0.97 |
MT0 | 0.99 | 0.96 |
MT12 | 0.99 | 0.99 |
NT0 | 0.99 | 0.98 |
NT12 | 0.99 | 0.96 |
Management | ∆ | A | αmaximum | f(αmaximum) |
---|---|---|---|---|
F0 | 1.07 ± 0.05 | 0.62 ± 0.05 α | 3.67 ± 0.04 α | 2.78 ± 0.01 α |
F12 | 1.04 ± 0.02 | 0.72 ± 0.05 β | 3.55 ± 0.05 β | 2.68 ± 0.02 β |
CT0 | 1.00 ± 0.06 | 0.49 ± 0.09 | 3.71 ± 0.08 | 2.84 ± 0.02 |
CT12 | 0.97 ± 0.04 | 0.57 ± 0.10 | 3.66 ± 0.05 | 2.85 ± 0.02 |
MT0 | 1.04 ± 0.05 α | 0.63 ± 0.08 α | 3.66 ± 0.06 | 2.80 ± 0.03 |
MT12 | 0.95 ± 0.09 β | 0.45 ± 0.11 β | 3.66 ± 0.06 | 2.81 ± 0.02 |
NT0 | 1.01 ± 0.05 | 1.03 ± 0.10 α | 3.43 ± 0.07 α | 2.66 ± 0.03 α |
NT12 | 1.03 ± 0.06 | 0.83 ± 0.08 β | 3.55 ± 0.05 β | 2.73 ± 0.02 β |
Management | D0 | D1 | D2 | |
F0 | 2.78 ± 0.01 α | 2.65 ± 0.02 α | 2.61 ± 0.03 α | |
F12 | 2.68 ± 0.02 β | 2.54 ± 0.02 β | 2.50 ± 0.03 β | |
CT0 | 2.84 ± 0.02 | 2.74 ± 0.04 | 2.71 ± 0.04 | |
CT12 | 2.85 ± 0.02 | 2.73 ± 0.03 | 2.69 ± 0.04 | |
MT0 | 2.80 ± 0.03 | 2.67 ± 0.03 α | 2.62 ± 0.04 α | |
MT12 | 2.81 ± 0.02 | 2.72 ± 0.03 β | 2.71 ± 0.04 β | |
NT0 | 2.66 ± 0.03 α | 2.48 ± 0.03 α | 2.41 ± 0.03 α | |
NT12 | 2.73 ± 0.02 β | 2.57 ± 0.04 β | 2.52 ± 0.04 β |
Management | DA | C | τ |
---|---|---|---|
F0 | 0.21 ± 0.05 | 2.78 ± 0.30 α | 1.46 ± 0.03 α |
F12 | 0.25 ± 0.09 | 1.48 ± 0.14 β | 1.62 ± 0.08 β |
CT0 | 0.31 ± 0.09 | 4.20 ± 1.49 | 1.36 ± 0.06 |
CT12 | 0.34 ± 0.10 | 4.36 ± 1.04 | 1.42 ± 0.09 |
MT0 | 0.29 ± 0.10 | 2.72 ± 0.70 | 1.47 ± 0.07 |
MT12 | 0.36 ± 0.07 | 2.36 ± 0.98 | 1.39 ± 0.09 |
NT0 | 0.39 ± 0.13 | 1.18 ± 0.18 α | 1.84 ± 0.15 α |
NT12 | 0.31 ± 0.09 | 1.49 ± 0.19 β | 1.59 ± 0.09 β |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, J.A.T.; Cássaro, F.A.M.; Posadas, A.N.D.; Pires, L.F. Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses. Int. J. Environ. Res. Public Health 2022, 19, 10582. https://doi.org/10.3390/ijerph191710582
de Oliveira JAT, Cássaro FAM, Posadas AND, Pires LF. Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses. International Journal of Environmental Research and Public Health. 2022; 19(17):10582. https://doi.org/10.3390/ijerph191710582
Chicago/Turabian Stylede Oliveira, Jocenei A. T., Fábio A. M. Cássaro, Adolfo N. D. Posadas, and Luiz F. Pires. 2022. "Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses" International Journal of Environmental Research and Public Health 19, no. 17: 10582. https://doi.org/10.3390/ijerph191710582
APA Stylede Oliveira, J. A. T., Cássaro, F. A. M., Posadas, A. N. D., & Pires, L. F. (2022). Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses. International Journal of Environmental Research and Public Health, 19(17), 10582. https://doi.org/10.3390/ijerph191710582