The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example
Abstract
:1. Introduction
2. Literature Review and Research Framework
2.1. Related and Unrelated Variety
2.2. Green Innovation
2.3. Diversity and Green Innovation
2.4. Research Framework
3. Materials and Methods
3.1. Study Area and Data Sources
3.2. Green Innovation Efficiency Measurement
3.2.1. Green Innovation Efficiency Index Construction
3.2.2. Super-SBM
3.3. Regional Knowledge Diversification
3.4. Econometric and Estimation Methods
4. Results
4.1. Spatio-Temporal Change of Related Variety, Unrelated Variety, and Green Innovation Efficiency
4.1.1. Temporal Variation of Related Variety, Unrelated Variety, and Green Innovation Efficiency
4.1.2. Spatial Variation of Related Variety, Unrelated Variety, and Green Innovation Efficiency
4.2. The Influence of Related Variety and Unrelated Variety on Green Innovation
4.2.1. Base Model
4.2.2. Threshold Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef]
- Dhahri, S.; Omri, A. Entrepreneurship contribution to the three pillars of sustainable development: What does the evidence really say? World Dev. 2018, 106, 64–77. [Google Scholar] [CrossRef]
- Cao, W.B.; Zhang, Y.; Qian, P. The effect of innovation-driven strategy on green economic development in China: An empirical study of smart cities. Int. J. Environ. Res. Public Health 2019, 16, 1520. [Google Scholar] [CrossRef] [PubMed]
- Attaran, M. Industrial diversity and economic-performance in United-States areas. Ann. Reg. Sci. 1986, 20, 44–54. [Google Scholar] [CrossRef]
- Storper, M.; Christopherson, S. Flexible specialization and regional industrial agglomerations—The case of the united-states motion-picture industry. Ann. Assoc. Am. Geogr. 1987, 77, 104–117. [Google Scholar] [CrossRef]
- Balland, P.A.; Boschma, R.; Crespo, J.; Rigby, D.L. Smart specialization policy in the European Union: Relatedness, knowledge complexity and regional diversification. Reg. Stud. 2019, 53, 1252–1268. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961; Volume 21, pp. 13–25. [Google Scholar]
- Boschma, R.; Capone, G. Institutions and diversification: Related versus unrelated diversification in a varieties of capitalism framework. Res. Policy 2015, 44, 1902–1914. [Google Scholar] [CrossRef]
- Frenken, K.; Boschma, R.A. A theoretical framework for evolutionary economic geography: Industrial dynamics and urban growth as a branching process. J. Econ. Geogr. 2007, 7, 635–649. [Google Scholar] [CrossRef]
- Schumpeter, J.A. Business Cycles: A Theoretical, Historical, and Statistical Analysis of the Capitalist Process; McGraw-Hill: New York, NY, USA, 1939. [Google Scholar]
- Huq, S.; Reid, H.; Murray, L.A. Climate Change and Development Links; IIED: London, UK, 2006; Volume 123. [Google Scholar]
- Hu, S.; Zeng, G.; Cao, X.; Yuan, H.; Chen, B. Does technological innovation promote green development? A case study of the Yangtze River Economic Belt in China. Int. J. Environ. Res. Public Health 2021, 18, 6111. [Google Scholar] [CrossRef]
- Gao, Y.; Tsai, S.B.; Xue, X.; Ren, T.; Du, X.; Chen, Q.; Wang, J. An empirical study on green innovation efficiency in the green institutional environment. Sustainability 2018, 30724, 724. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, V. Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms. Res Policy 2012, 41, 614–623. [Google Scholar]
- Vona, F.; Marin, G.; Consoli, D.; Popp, D. Environmental regulation and green skills: An empirical exploration. J. Assoc. Environ. Resour. Econ. 2018, 5, 713–753. [Google Scholar] [CrossRef]
- Virkanen, J. Effect of urbanization on metal deposition in the bay of Töölönlahti, Southern Finland. Mar. Pollut. Bull. 1998, 36, 729–738. [Google Scholar] [CrossRef]
- Cingano, F.; Schivardi, F. Identifying the sources of local productivity growth. J. Eur. Econ. Assoc. 2004, 2, 720–742. [Google Scholar] [CrossRef]
- Andersson, M.; Lööf, H. Agglomeration and productivity: Evidence from firm-level data. Ann. Reg. Sci. 2011, 46, 601–620. [Google Scholar] [CrossRef]
- Barbieri, N.; Perruchas, F.; Consoli, D. Specialization, diversification, and environmental technology life cycle. Econ. Geogr. 2020, 96, 161–186. [Google Scholar] [CrossRef]
- Park, J.I.; Choi, T. Related variety, unrelated variety, and R&D investment in the environmental industry. Asian J. Technol. Innov. 2022, 30, 90–105. [Google Scholar]
- Henderson, V.; Kuncoro, A.; Turner, M. Industrial development in cities. J. Political Econ. 1995, 103, 1067–1090. [Google Scholar] [CrossRef]
- Fussier, C.; James, P. Driving Eco Innovation: A Breakthrough Discipline for Innovation and Sustainbility; Financial Times; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Beise, M.; Rennings, K. Lead markets and regulation: A framework for analyzing the international diffusion of environmental innovations. Ecol. Econ. 2005, 52, 5–17. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Huber, J. Technological environmental innovations (TEIs) in a chain-analytical and life-cycle-analytical perspective. J. Clean Prod. 2008, 16, 1980–1986. [Google Scholar] [CrossRef]
- Bao, H.; Teng, T.W.; Hu, S.L.; Ding, J. Spatial differentiation and influencing factors of urban green innovation efficiency in yangtze river delta, Resources and environment in the yangtze basin. Discret. Dyn. Nat. Soc. 2022, 31, 273–284. [Google Scholar]
- Zhou, L.; Che, L.; Zhou, C.H. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. Acta Geogr. Sin. 2019, 74, 2027–2044. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Miao, C.C.; Yuan, F. Impact of industrial spatial and organizational agglomerationpatterns on industrial SO2 emissions of prefecture-level citiesin China. Acta Geogr. Sin. 2019, 74, 2045–2061. [Google Scholar]
- Weitzman, M.L. Recombinant growth. Q. J. Econ. 1998, 113, 331–360. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Q.W.; Zhao, Z.Y. Trade linkages, spatial agglomeration and carbon emissions: An analysis of new economic geography. J. Manag. World 2014, 1, 176–177. [Google Scholar] [CrossRef]
- Castaldi, C.; Frenken, K.; Los, B. Related Variety, Unrelated Variety and Technological Breakthroughs: An analysis of US State-Level Patenting. Reg. Stud. 2015, 49, 767–781. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade and the Environment; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- De Leeuw, F.A.A.M.; Moussiopoulos, N.; Sahm, P.; Bartonova, A. Urban air quality in larger conurbations in the European Union. Environ. Model. Softw. 2001, 16, 399–414. [Google Scholar] [CrossRef]
- Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.E.; Chen, J.; Leung, H.L. Urbanization, land use, and water quality in Shanghai: 1947–1996. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
- Otsuka, A.; Goto, M.; Sueyoshi, T. Energy efficiency and agglomeration economies: The case of Japanese manufacturing industries. Reg. Sci. Policy Pract. 2014, 6, 195–212. [Google Scholar] [CrossRef]
- Henseler, J. Partial least squares path modeling: Quo vadis? Qual. Quant. 2018, 52, 1–8. [Google Scholar] [CrossRef]
- Neffke, F.; Henning, M.; Boschma, R.; Lundquist, K.J.; Olander, L.O. The dynamics of agglomeration externalities along the life cycle of industries. Reg. Stud. 2011, 45, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Boschma, R.; Minondo, A.; Navarro, M. The emergence of new industries at the regional level in s pain: A proximity approach based on product relatedness. Econ. Geogr. 2013, 89, 29–51. [Google Scholar] [CrossRef]
- Biswas, A.; Jain, A. Survey on edge computing—Key technology in retail industry. In Computer Networks and Inventive Communication Technologies; Springer: Singapore, 2021; pp. 97–106. [Google Scholar]
- Du, J.L.; Liu, Y.; Diao, W.X. Assessing regional differences in green innovation efficiency of industrial enterprises in China. Int. J. Environ. Res. Public Health 2019, 16, 940. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Osei, E. Sustainable development of China’s industrial economy: An empirical study of the period 2001–2011. Sustainability 2018, 10, 764. [Google Scholar] [CrossRef]
- Kneller, R.; Manderson, E. Environmental regulations and innovation activity in UK manufacturing industries. Resour. Energy Econ. 2012, 34, 211–235. [Google Scholar] [CrossRef]
- Managi, S.; Kaneko, S. Economic growth and the environment in China: An empirical analysis of productivity. Int. J. Glob. Environ. Issues 2006, 6, 89–133. [Google Scholar] [CrossRef]
- Yao, R.; Niu, C.H.; Niu, T. Theoretical model and empirical research on green innovation efficiency. Manag. World 2014, 7, 176–177. [Google Scholar] [CrossRef]
- Li, H.; Fang, K.; Yang, W.; Wang, D.; Hong, X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Fang, Z.; Razzaq, A.; Mohsin, M.; Irfan, M. Spatial spillovers and threshold effects of internet development and entrepreneurship on green innovation efficiency in China. Technol. Soc. 2022, 68, 101844. [Google Scholar] [CrossRef]
- Gottlieb, S.; Tone, F.; Wang, C.; Wang, X.; Wirosoetisno, D. Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations. SIAM J. Numer. Anal. 2012, 50, 126–150. [Google Scholar] [CrossRef] [Green Version]
- Conceição, P.; Galbraith, J.K. Constructing long and dense time-series of inequality using the Theil index. East. Econ. J. 2000, 26, 61–74. [Google Scholar]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Qunyong, W. Fixed-effect panel threshold model using Stata. STATA J. 2015, 15, 121–134. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econ. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Dong, H.Z.; Li, X.; Zhang, R.J. Spatial-temporal characteristics and driving factors of green innovation efficiency in Guangdong-Hongkong-Macao greater bay area. Econ. Geogr. 2021, 41, 134–144. [Google Scholar] [CrossRef]
- Mutl, J.; Pfaffermayr, M. The Hausman test in a Cliff and Ord panel model. Econ. J. 2011, 14, 48–76. [Google Scholar] [CrossRef]
- Duan, D.; Xia, Q.; Zhang, Y.; Gao, X. Evolution pattern and impact factors of environmental innovation in the Yangtze River Economic Belt. Sci. Geogr. Sin. 2021, 41, 1158–1167. [Google Scholar] [CrossRef]
- Liu, H.J.; Li, C.P.Y. Analysis on the spatial imbalance of China’s green total factor productivity growth and its causes. Theory Pract. Financ. Econ. 2018, 5, 116–121. [Google Scholar] [CrossRef]
- Zhang, J.T.; Fan, Z.W. Urban industrial structure and green total factor productivity: An empirical analysis based on northeast China. Sci. Technol. Manag. Res. 2021, 41, 77–86. [Google Scholar]
- Hu, Z.; Miao, J.; Miao, C. Agglomeration characteristics of industrial pollution and their influencing factors on the scale of cities in China. Geogr. Res. 2016, 35, 1470–1482. [Google Scholar]
- Hu, M.; Li, Z.; Ding, Z.; Jia, W.X. The evolution characteristics and threshold effects of the resource and environmental pressure in the Pan-yangtze River Delta cities. Sci. Geogr. Sin. 2020, 5, 701–709. [Google Scholar] [CrossRef]
- Storper, M. Regional “worlds” of production: Learning and innovation in the technology districts of France, Italy and the USA. Reg. Stud. 1993, 27, 433–455. [Google Scholar] [CrossRef]
- Saviotti, P.P.; Frenken, K. Export variety and the economic performance of countries. J. Evol. Econ. 2008, 18, 201–218. [Google Scholar] [CrossRef]
- Neffke, F.; Henning, M.; Boschma, R. How do regions diversify over time? Industry relatedness and the development of new growth paths in regions. Econ. Geogr. 2011, 87, 237–265. [Google Scholar] [CrossRef]
First-Level Indicator | Second-Level Indicator | Third-Level Indicator | |
---|---|---|---|
Input | R&D investment | Number of people engaged in R&D activities in industrial enterprises | Li et al. [44] Kneller et al. [45] |
Energy input | Industrial comprehensive energy consumption | Li et al. [44] | |
Capital investment | Total industrial fixed asset investment | Zhou et al. [27] | |
Output | Expected output | Number of patents | Kneller et al. [45] |
New products | |||
Unexpected output | Waste gas | Managi and Kaneko [46] | |
Sewage | |||
General industrial solid-waste emissions |
Theme | Variable | Calculation Method | Mean | Std. Dev. | Min | Max | Obs. |
---|---|---|---|---|---|---|---|
Dependent variable | Green innovation efficiency (GIE) | Calculated by Super-SBM | 0.614 | 0.254 | 0.141 | 1.512 | 369 |
Explanatory variable | Unrelated variety (UV) | Count of patents’ entropy in a city | 3.378 | 0.653 | 0 | 4.136 | 369 |
Related variety (RV) | Count of patents’ entropy in a city | 0.277 | 0.904 | 0 | 8.233 | 369 | |
Control variables | Environmental regulation (lner) | Environmental protection investment in GDP (%) | 0.544 | 0.55 | 0.011 | 3.859 | 369 |
Openness (lnfdi) | Foreign direct investment | 11.299 | 1.267 | 8.181 | 14.431 | 369 | |
Industrial structure (is) | Output value of secondary industry in GDP (%) | 48.719 | 7.962 | 29.78 | 74.735 | 369 | |
Economy size (lnrgdp) | GDP per capita | 10.891 | 0.607 | 9.162 | 12.048 | 369 | |
Technology level (lnte) | Tech spending | 11.475 | 1.226 | 8.176 | 15.266 | 369 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Related Variety (RV) | 0.059 ** (0.023) | 0.051 ** (0.025) | ||
Unrelated Variety (UV) | −0.160 *** (0.030) | −0.216 *** (0.039) | ||
Economy size (lnrgdp) | 0.124 * (0.066) | 0.255 *** (0.069) | 0.224 ** (0.088) | 0.416 *** (0.090) |
Industrial structure (is) | −0.008 *** (0.003) | −0.008 *** (0.003) | −0.009 ** (0.003) | −0.007 ** (0.003) |
Technology level (lnte) | −0.054 * (0.030) | −0.008 (0.030) | −0.055 (0.044) | −0.002 (0.041) |
Openness (lnfdi) | −0.002 (0.030) | 0.044 (0.030) | 0.003 (0.038) | 0.060 (0.037) |
Environmental regulation (er) | −0.006 (0.024) | −0.006 (0.023) | −0.053 (0.035) | −0.046 (0.033) |
_cons | 0.271 (0.606) | −1.610 * (0.678) | −0.848 (0.888) | −3.589 *** (0.953) |
Time fixed | Y | Y | Y | Y |
City fixed | Y | Y | Y | Y |
N | 369 | 369 | 243 | 243 |
Variables | RV-1 | RV-2 | lner | lnfdi | lnrgdp | Is | lnte | Cons |
---|---|---|---|---|---|---|---|---|
Scale | 0.069 *** (0.022) | 0.504 *** (0.088) | −0.001 (0.023) | 0.020 (0.029) | 0.059 (0.065) | −0.006 *** (0.002) | −0.055 (0.029) | 0.656 (0.587) |
Structure | - | - | - | - | - | - | - | - |
Technique | - | - | - | - | - | - | - | - |
Variables | UV-1 | UV-2 | UV-3 | lner | lnfdi | lnrgdp | Is | lnte | Cons |
---|---|---|---|---|---|---|---|---|---|
Scale | −0.112 *** (0.031) | −0.052 (0.036) | 0.010 (0.023) | 0.062 (0.029) | 0.113 (0.071) | −0.007 *** (0.002) | −0.013 (0.029) | −0.471 (0.686) | |
Structure | - | - | - | - | - | - | - | - | - |
Technique | −0.135 *** (0.031) | −0.081 ** (0.039) | - | −0.005 (0.023) | 0.045 (0.030) | 0.245 *** (0.068) | −0.008 ** (0.002) | −0.040 (0.031) | −1.304 * (0.675) |
Year | lnrgdp < 11.62 (%) | lnte < 13.3 (%) |
---|---|---|
2010 | 100 | 97.6 |
2012 | 90.2 | 95.1 |
2014 | 95.1 | 95.1 |
2016 | 80.5 | 90.2 |
2018 | 73.2 | 82.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, H.; Teng, T.; Cao, X.; Wang, S.; Hu, S. The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example. Int. J. Environ. Res. Public Health 2022, 19, 10600. https://doi.org/10.3390/ijerph191710600
Bao H, Teng T, Cao X, Wang S, Hu S. The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example. International Journal of Environmental Research and Public Health. 2022; 19(17):10600. https://doi.org/10.3390/ijerph191710600
Chicago/Turabian StyleBao, Han, Tangwei Teng, Xianzhong Cao, Shengpeng Wang, and Senlin Hu. 2022. "The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example" International Journal of Environmental Research and Public Health 19, no. 17: 10600. https://doi.org/10.3390/ijerph191710600
APA StyleBao, H., Teng, T., Cao, X., Wang, S., & Hu, S. (2022). The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example. International Journal of Environmental Research and Public Health, 19(17), 10600. https://doi.org/10.3390/ijerph191710600