Machine Learning for Prediction of Cognitive Health in Adults Using Sociodemographic, Neighbourhood Environmental, and Lifestyle Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Predictors
2.2.1. Sociodemographic Predictors
2.2.2. Built and Natural Environment Predictors
2.2.3. Lifestyle Predictors
2.3. Outcome Measures
2.4. Model Fitting and Evaluation
2.4.1. Multiple Imputations
2.4.2. Machine Learning Models
2.4.3. Training and Testing Data
2.4.4. Machine Learning-Based Regression
2.4.5. Machine Learning-Based Classification
3. Results
3.1. Sample Characteristics
3.2. Machine Learning-Based Regression
3.3. Machine Learning-Based Classification
3.3.1. Latent Profile Analysis—Defining Classes of Cognitive Function Profiles
3.3.2. Classification Performance
3.4. Relative Influence of Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerin, E.; Barnett, A.; Shaw, J.E.; Martino, E.; Knibbs, L.D.; Tham, R.; Wheeler, A.J.; Anstey, K.J. From urban neighbourhood environments to cognitive health: A cross-sectional analysis of the role of physical activity and sedentary behaviours. BMC Public Health 2021, 21, 2320. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Beckett, N.; Geneva, M.; Tzekova, M.; Lu, F.H.; Poulter, R.; Gainsborough, N.; Williams, B.; de Vernejoul, M.C.; Fletcher, A.; et al. Sociodemographic and lifestyle risk factors for incident dementia and cognitive decline in the HYVET. Age Ageing 2009, 38, 521–527. [Google Scholar] [CrossRef]
- Cerin, E. Building the evidence for an ecological model of cognitive health. Health Place 2019, 60, 102206. [Google Scholar] [CrossRef] [PubMed]
- Na, K.-S. Prediction of future cognitive impairment among the community elderly: A machine-learning based approach. Sci. Rep. 2019, 9, 3335. [Google Scholar] [CrossRef]
- Stern, Y.; MacKay-Brandt, A.; Lee, S.; McKinley, P.; McIntyre, K.; Razlighi, Q.; Agarunov, E.; Bartels, M.; Sloan, R.P. Effect of aerobic exercise on cognition in younger adults: A randomized clinical trial. Neurology 2019, 92, e905–e916. [Google Scholar] [CrossRef]
- Besser, L.M.; McDonald, N.C.; Song, Y.; Kukull, W.A.; Rodriguez, D.A. Neighborhood Environment and Cognition in Older Adults: A Systematic Review. Am. J. Prev. Med. 2017, 53, 241–251. [Google Scholar] [CrossRef]
- Cerin, E.; Barnett, A.; Shaw, J.E.; Martino, E.; Knibbs, L.D.; Tham, R.; Wheeler, A.J.; Anstey, K.J. Urban Neighbourhood Environments, Cardiometabolic Health and Cognitive Function: A National Cross-Sectional Study of Middle-Aged and Older Adults in Australia. Toxics 2022, 10, 23. [Google Scholar] [CrossRef]
- Wu, Y.T.; Brayne, C.; Liu, Z.R.; Huang, Y.Q.; Sosa, A.L.; Acosta, D.; Prina, M. Neighbourhood environment and dementia in older people from high-, middle- and low-income countries: Results from two population-based cohort studies. BMC Public Health 2020, 20, 1330. [Google Scholar] [CrossRef]
- Clarke, P.J.; Weuve, J.; Barnes, L.; Evans, D.A.; Mendes de Leon, C.F. Cognitive decline and the neighborhood environment. Ann. Epidemiol. 2015, 25, 849–854. [Google Scholar] [CrossRef]
- Cerin, E.; Rainey-Smith, S.R.; Ames, D.; Lautenschlager, N.T.; Macaulay, S.L.; Fowler, C.; Robertson, J.S.; Rowe, C.C.; Maruff, P.; Martins, R.N.; et al. Associations of neighborhood environment with brain imaging outcomes in the Australian Imaging, Biomarkers and Lifestyle cohort. Alzheimers Dement. 2017, 13, 388–398. [Google Scholar] [CrossRef]
- Power, M.C.; Weisskopf, M.G.; Alexeeff, S.E.; Coull, B.A.; Spiro, A., 3rd; Schwartz, J. Traffic-related air pollution and cognitive function in a cohort of older men. Environ. Health Perspect. 2011, 119, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E.; Barnett, A.; Chaix, B.; Nieuwenhuijsen, M.J.; Caeyenberghs, K.; Jalaludin, B.; Sugiyama, T.; Sallis, J.F.; Lautenschlager, N.T.; Ni, M.Y.; et al. International Mind, Activities and Urban Places (iMAP) study: Methods of a cohort study on environmental and lifestyle influences on brain and cognitive health. BMJ Open 2020, 10, e036607. [Google Scholar] [CrossRef] [PubMed]
- Tsang, G.; Xie, X.; Zhou, S.M. Harnessing the Power of Machine Learning in Dementia Informatics Research: Issues, Opportunities, and Challenges. IEEE Rev. Biomed. Eng. 2020, 13, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Cho, H.E.; Kim, J.H.; Wall, M.M.; Stern, Y.; Lim, H.; Yoo, S.; Kim, H.S.; Cha, J. Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data. NPJ Digit. Med. 2020, 3, 46. [Google Scholar] [CrossRef]
- Liu, S.Q.; Higgs, C.; Arundel, J.; Boeing, G.; Cerdera, N.; Moctezuma, D.; Cerin, E.; Adlakha, D.; Lowe, M.; Giles-Corti, B. A Generalized Framework for Measuring Pedestrian Accessibility around the World Using Open Data. Geogr. Anal. 2021, 54, 559–582. [Google Scholar] [CrossRef]
- Anstey, K.J.; Sargent-Cox, K.; Eramudugolla, R.; Magliano, D.J.; Shaw, J.E. Association of cognitive function with glucose tolerance and trajectories of glucose tolerance over 12 years in the AusDiab study. Alzheimers Res. Ther. 2015, 7, 48. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Zimmet, P.Z.; Welborn, T.A.; Cameron, A.J.; Shaw, J.; de Courten, M.; Jolley, D.; McCarty, D.J.; Australian Diabetes, Obesity and Lifestyle Study (AusDiab). The Australian Diabetes, Obesity and Lifestyle Study (AusDiab)—Methods and response rates. Diabetes Res. Clin. Pract. 2002, 57, 119–129. [Google Scholar] [CrossRef]
- Cerin, E.; Van Dyck, D.; Zhang, C.J.P.; Van Cauwenberg, J.; Lai, P.C.; Barnett, A. Urban environments and objectively-assessed physical activity and sedentary time in older Belgian and Chinese community dwellers: Potential pathways of influence and the moderating role of physical function. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 73. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Australian Statistical Geography Standard (ASGS): Volume 1—Main Structure and Greater Capital City Statistical Areas; ABS: Canberra, Australia, 2011.
- PSMA Street Network. 2012. Available online: https://geoscape.com.au/ (accessed on 11 July 2022).
- Crossman, S.; Li, O. Surface Hydrology Polygons (National); Geoscience Australia: Canberra, Australia, 2015.
- Knibbs, L.D.; Hewson, M.G.; Bechle, M.J.; Marshall, J.D.; Barnett, A.G. A national satellite-based land-use regression model for air pollution exposure assessment in Australia. Environ. Res. 2014, 135, 204–211. [Google Scholar] [CrossRef]
- Knibbs, L.D.; van Donkelaar, A.; Martin, R.V.; Bechle, M.J.; Brauer, M.; Cohen, D.D.; Cowie, C.T.; Dirgawati, M.; Guo, Y.; Hanigan, I.C.; et al. Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia. Environ. Sci. Technol. 2018, 52, 12445–12455. [Google Scholar] [CrossRef] [Green Version]
- Knibbs, L.D.; Coorey, C.P.; Bechle, M.J.; Cowie, C.T.; Dirgawati, M.; Heyworth, J.S.; Marks, G.B.; Marshall, J.D.; Morawska, L.; Pereira, G.; et al. Independent Validation of National Satellite-Based Land-Use Regression Models for Nitrogen Dioxide Using Passive Samplers. Environ. Sci. Technol. 2016, 50, 12331–12338. [Google Scholar] [CrossRef] [PubMed]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Thompkins, B.A.O. California Verbal Learning Test; Psychological Corporation Harcourt Brace Jovanovich: New York, NY, USA, 1987. [Google Scholar]
- Imms, P.; Dominguez, D.J.F.; Burmester, A.; Seguin, C.; Clemente, A.; Dhollander, T.; Wilson, P.H.; Poudel, G.; Caeyenberghs, K. Navigating the link between processing speed and network communication in the human brain. Brain Struct. Funct. 2021, 226, 1281–1302. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Hemphill, J.F. Interpreting the magnitudes of correlation coefficients. Am. Psychol. 2003, 58, 78–79. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Casanova, R.; Saldana, S.; Lutz, M.W.; Plassman, B.L.; Kuchibhatla, M.; Hayden, K.M. Investigating Predictors of Cognitive Decline Using Machine Learning. J. Gerontol. B Psychol. 2020, 75, 733–742. [Google Scholar] [CrossRef]
- Larouche, E.; Tremblay, M.P.; Potvin, O.; Laforest, S.; Bergeron, D.; Laforce, R.; Monetta, L.; Boucher, L.; Tremblay, P.; Belleville, S.; et al. Normative Data for the Montreal Cognitive Assessment in Middle-Aged and Elderly Quebec-French People. Arch. Clin. Neuropsychol. 2016, 31, 819–826. [Google Scholar] [CrossRef]
- Ritchie, S.J.; Tucker-Drob, E.M.; Deary, I.J. A strong link between speed of visual discrimination and cognitive ageing. Curr. Biol. 2014, 24, R681–R683. [Google Scholar] [CrossRef]
- Clemente, A.; Dominguez, D.J.; Imms, P.; Burmester, A.; Dhollander, T.; Wilson, P.H.; Poudel, G.; Caeyenberghs, K. Individual differences in attentional lapses are associated with fiber-specific white matter microstructure in healthy adults. Psychophysiology 2021, 58, e13871. [Google Scholar] [CrossRef]
- Noble, K.G.; Grieve, S.M.; Korgaonkar, M.S.; Engelhardt, L.E.; Griffith, E.Y.; Williams, L.M.; Brickman, A.M. Hippocampal volume varies with educational attainment across the life-span. Front. Hum. Neurosci. 2012, 6, 307. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.S.; Colley, R.C.; Saunders, T.J.; Healy, G.N.; Owen, N. Physiological and health implications of a sedentary lifestyle. Appl. Physiol. Nutr. Metab. 2010, 35, 725–740. [Google Scholar] [CrossRef]
- Wheeler, M.J.; Green, D.J.; Ellis, K.A.; Cerin, E.; Heinonen, I.; Naylor, L.H.; Larsen, R.; Wennberg, P.; Boraxbekk, C.J.; Lewis, J.; et al. Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: A three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition. Br. J. Sports Med. 2020, 54, 776–781. [Google Scholar] [CrossRef]
- Craft, S. The Role of Metabolic Disorders in Alzheimer Disease and Vascular Dementia Two Roads Converged. Arch. Neurol. 2009, 66, 300–305. [Google Scholar] [CrossRef]
- Cerin, E.; Barnett, A.; Zhang, C.J.P.; Lai, P.C.; Sit, C.H.P.; Lee, R.S.Y. How urban densification shapes walking behaviours in older community dwellers: A cross-sectional analysis of potential pathways of influence. Int. J. Health Geogr. 2020, 19, 14. [Google Scholar] [CrossRef]
- Hamer, M.; Chida, Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol. Med. 2009, 39, 3–11. [Google Scholar] [CrossRef]
- Falck, R.S.; Davis, J.C.; Liu-Ambrose, T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 2017, 51, 800–811. [Google Scholar] [CrossRef]
- Cherrie, M.P.C.; Shortt, N.K.; Mitchell, R.J.; Taylor, A.M.; Redmond, P.; Thompson, C.W.; Starr, J.M.; Deary, I.J.; Pearce, J.R. Green space and cognitive ageing: A retrospective life course analysis in the Lothian Birth Cohort 1936. Soc. Sci. Med. 2018, 196, 56–65. [Google Scholar] [CrossRef]
- Dockx, Y.; Bijnens, E.M.; Luyten, L.; Peusens, M.; Provost, E.; Rasking, L.; Sleurs, H.; Hogervorst, J.; Plusquin, M.; Casas, L.; et al. Early life exposure to residential green space impacts cognitive functioning in children aged 4 to 6 years. Environ. Int. 2022, 161, 107094. [Google Scholar] [CrossRef]
- Campos-Magdaleno, M.; Pereiro, A.; Navarro-Pardo, E.; Juncos-Rabadan, O.; Facal, D. Dual-task performance in old adults: Cognitive, functional, psychosocial and socio-demographic variables. Aging Clin. Exp. Res. 2022, 34, 827–835. [Google Scholar] [CrossRef]
- Xing, L.; Lesperance, M.L.; Zhang, X.K. Simultaneous prediction of multiple outcomes using revised stacking algorithms. Bioinformatics 2020, 36, 65–72. [Google Scholar] [CrossRef]
Characteristics | Statistics | Characteristics | Statistics |
---|---|---|---|
Sociodemographic characteristics | |||
Age, years, M ± SD | 61.1 ± 11.4 | Sex, female, % | 55.2 |
Educational attainment, % | English-speaking background, % | 89.9 | |
Up to secondary | 32.7 | Household income, annual, % | |
Trade, technician certificate | 29.1 | Up to $49,999 | 32.9 |
Associate diploma and equiv. | 14.5 | $50,000–$99,999 | 26.8 |
Bachelor’s degree, post-graduate diploma | 23.1 | $100,000 and over | 28.9 |
Does not know or refusal | 8.8 | ||
Living arrangements, % | |||
Couple without children | 48.2 | ||
Couple with children | 26.8 | ||
Other | 22.4 | ||
Neighbourhood environment attributes, M ± SD | |||
Population density (persons/ha) | 17.4 ± 10.0 | Street intersection density | 62.2 ± 32.2 |
Dwelling density | 2.9 ± 4.2 | Percentage of parkland | 11.6 ± 12.5 |
Percentage of commercial land use | 2.5 ± 6.1 | Percentage of blue space | 0.2 ± 1.98 |
Percentage of residential land use | 73.6 ± 19.9 | Nearest parkland (km) | 0.3 ± 0.3 |
Nearest blue space (km) | 7.9 ± 9.3 | Aerial distance to trainline | 3.9 ± 5.3 |
PM2.5 | 6.3 ± 1.7 | Road density major roads (km) | 0.9 ± 1.7 |
NO2 (ppb) | 5.5 ± 2.1 | Road density minor roads (km) | 8.9 ± 3.7 |
Area-level IRSAD | 6.4 ± 2.7 | ||
Lifestyle attributes, M ± SD | |||
Vigorous gardening (times/week) | 0.8 ±1.5 | Muscle strength exercise | 0.9 ± 2.3 |
Walking for transport | 1.4 ± 3.5 | Walking for leisure | 2.4 ± 2.5 |
Total walking (n days/week) | 3.1 ± 2.6 | ||
Sitting for work | 1.6 ± 2.2 | Sitting for screen | 1.9 ± 1.3 |
Sitting for transport | 0.8 ± 0.8 | Non-work computer sitting | 0.6 ± 0.9 |
Sitting for other (h/day) | 3.4 ± 2.4 | ||
Cognitive function, M ± SD | |||
Memory, CVLT score | 6.5 ± 2.4 | Processing speed, SDMT score | 49.7 ± 11.6 |
Missing data, % | 2.3 | Missing data, % | 2.0 |
GBM | SVM | ANN | LM | |
---|---|---|---|---|
r2 (95% CI) | r2 (95% CI) | r2 (95% CI) | r2 (95% CI) | |
SDF | ||||
SDMT | 0.43 (0.37, 0.49) | 0.43 (0.37, 0.48) | 0.4 (0.33, 0.47) | 0.43 (0.37, 0.48) |
CVLT | 0.20 (0.14, 0.27) | 0.2 (0.14, 0.27) | 0.18 (0.12, 0.24) | 0.20 (0.14, 0.27) |
NEF | ||||
SDMT | 0.04 (0.02, 0.07) | 0.01 (0, 0.03) | 0.01 (0, 0.04) | 0.01 (0, 0.03) |
CVLT | 0.03 (0.01, 0.06) | 0 (0, 0.02) | 0.01 (0, 0.04) | 0 (0, 0.02) |
LSF | ||||
SDMT | 0.29 (0.23, 0.35) | 0.17 (0.12, 0.23) | 0.26 (0.2, 0.32) | 0.17 (0.12, 0.23) |
CVLT | 0.10 (0.06, 0.15) | 0.05 (0.01, 0.1) | 0.07 (0.03, 0.11) | 0.05 (0.02, 0.1) |
SDF + NEF | ||||
SDMT | 0.43 (0.37, 0.49) | 0.42 (0.36, 0.47) | 0.38 (0.31, 0.45) | 0.42 (0.37, 0.48) |
CVLT | 0.22 (0.15, 0.29) | 0.2 (0.14, 0.27) | 0.16 (0.1, 0.23) | 0.21 (0.15, 0.28) |
SDF + LSF | ||||
SDMT | 0.46 (0.41, 0.52) | 0.43 (0.37, 0.49) | 0.41 (0.35, 0.47) | 0.44 (0.38, 0.49) |
CVLT | 0.21 (0.15, 0.28) | 0.2 (0.14, 0.27) | 0.16 (0.09, 0.23) | 0.2 (0.14, 0.27) |
NEF + LSF | ||||
SDMT | 0.30 (0.24, 0.36) | 0.17 (0.12, 0.22) | 0.24 (0.18, 0.3) | 0.17 (0.12, 0.23) |
CVLT | 0.12 (0.07, 0.17) | 0.04 (0.01, 0.09) | 0.04 (0.01, 0.08) | 0.05 (0.02, 0.1) |
SDF + NEF + LSF | ||||
SDMT | 0.46 (0.41, 0.52) | 0.42 (0.37, 0.48) | 0.4 (0.31, 0.48) | 0.43 (0.38, 0.49) |
CVLT | 0.23 (0.17, 0.3) | 0.2 (0.14, 0.27) | 0.15 (0.1, 0.22) | 0.21 (0.15, 0.28) |
GBM | SVM | ANN | LM | |
---|---|---|---|---|
AUC (95% CI) | AUC (95% CI) | AUC (95% CI) | AUC (95% CI) | |
SDF | 0.84 (0.68, 0.93) | 0.84 (0.68, 0.93) | 0.84 (0.67, 0.93) | 0.85 (0.67, 0.94) |
NEF | 0.58 (0.51, 0.65) | 0.53 (0.49, 0.57) | 0.53 (0.45, 0.61) | 0.56 (0.5, 0.61) |
LSF | 0.78 (0.61, 0.89) | 0.62 (0.44, 0.76) | 0.74 (0.61, 0.83) | 0.74 (0.61, 0.85) |
SDF + NEF | 0.84 (0.68, 0.93) | 0.84 (0.68, 0.93) | 0.84 (0.68, 0.93) | 0.84 (0.68, 0.93) |
SDF + LSF | 0.85 (0.67, 0.95) | 0.84 (0.68, 0.93) | 0.85 (0.68, 0.93) | 0.85 (0.67, 0.94) |
NEF + LSF | 0.78 (0.6, 0.89) | 0.64 (0.55, 0.73) | 0.74 (0.62, 0.83) | 0.74 (0.62, 0.83) |
SDF + NEF + LSF | 0.85 (0.67, 0.94) | 0.84 (0.69, 0.92) | 0.84 (0.68, 0.93) | 0.84 (0.68, 0.93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, G.R.; Barnett, A.; Akram, M.; Martino, E.; Knibbs, L.D.; Anstey, K.J.; Shaw, J.E.; Cerin, E. Machine Learning for Prediction of Cognitive Health in Adults Using Sociodemographic, Neighbourhood Environmental, and Lifestyle Factors. Int. J. Environ. Res. Public Health 2022, 19, 10977. https://doi.org/10.3390/ijerph191710977
Poudel GR, Barnett A, Akram M, Martino E, Knibbs LD, Anstey KJ, Shaw JE, Cerin E. Machine Learning for Prediction of Cognitive Health in Adults Using Sociodemographic, Neighbourhood Environmental, and Lifestyle Factors. International Journal of Environmental Research and Public Health. 2022; 19(17):10977. https://doi.org/10.3390/ijerph191710977
Chicago/Turabian StylePoudel, Govinda R., Anthony Barnett, Muhammad Akram, Erika Martino, Luke D. Knibbs, Kaarin J. Anstey, Jonathan E. Shaw, and Ester Cerin. 2022. "Machine Learning for Prediction of Cognitive Health in Adults Using Sociodemographic, Neighbourhood Environmental, and Lifestyle Factors" International Journal of Environmental Research and Public Health 19, no. 17: 10977. https://doi.org/10.3390/ijerph191710977
APA StylePoudel, G. R., Barnett, A., Akram, M., Martino, E., Knibbs, L. D., Anstey, K. J., Shaw, J. E., & Cerin, E. (2022). Machine Learning for Prediction of Cognitive Health in Adults Using Sociodemographic, Neighbourhood Environmental, and Lifestyle Factors. International Journal of Environmental Research and Public Health, 19(17), 10977. https://doi.org/10.3390/ijerph191710977