Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Social Network Analysis Model
2.2. Data Collection
2.3. Model Construction
2.3.1. Initial Extraction of Influencing Factors
2.3.2. Construction Process
2.4. Indicator Analysis
3. Results and Discussion
3.1. Core-Periphery Analysis
3.2. Centrality Analysis
3.2.1. Degree Centrality
3.2.2. Betweenness Centrality
3.2.3. Closeness Centrality
3.3. Factor Pairing Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.-X.; Chen, W.; Kougias, I.; Kazakis, N. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ. 2018, 621, 1124–1141. [Google Scholar] [CrossRef]
- CRED; UNDRR. Human Cost of Disasters. An Overview of the Last 20 Years: 2000–2019. 2020. Available online: https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000-2019 (accessed on 17 March 2022).
- Willner, S.N.; Anders, L.; Fang, Z.; Katja, F. Adaptation required to preserve future high-end river flood risk at present levels. Sci. Adv. 2018, 4, eaao1914. [Google Scholar] [CrossRef] [PubMed]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T.; Zou, L.; Zhang, L.; Chen, X. Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nat. Commun. 2018, 9, 3153. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Y.; Xu, X. Flood insurance in China: Recommendations based on a comparative analysis of flood insurance in developed countries. Environ. Earth Sci. 2019, 78, 93. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Huang, J.; Zhai, J.; Xia, J.; Tao, H.; Wang, Y.; Sun, H.; Luo, Y.; Zhang, L.; et al. Each 0.5 °C of Warming Increases Annual Flood Losses in China by More than US$60 Billion. Bull. Am. Meteorol. Soc. 2020, 101, E1464–E1474. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y.; Ye, X. The changing patterns of floods in Poyang Lake, China: Characteristics and explanations. Nat. Hazards 2015, 76, 651–666. [Google Scholar] [CrossRef]
- Wang, L.-N.; Shao, Q.-X.; Chen, X.-H.; Li, Y.; Wang, D.-G. Flood changes during the past 50 years in Wujiang River, South China. Hydrol. Processes 2012, 26, 3561–3569. [Google Scholar] [CrossRef]
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- Li, G.-F.; Xiang, X.-Y.; Tong, Y.-Y.; Wang, H.-M. Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stoch. Environ. Res. Risk Assess. 2013, 27, 1683–1693. [Google Scholar] [CrossRef]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.-Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J. Hydrol. 2012, 464, 127–139. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Gao, C.; Shufang, O. Analysis of Current Situation and Problems of Urban Waterlogging Control in China. J. Catastrophol. 2018, 33, 147–151. [Google Scholar] [CrossRef]
- Santos, J.; Yip, C.; Thekdi, S.; Pagsuyoin, S. Workforce/Population, Economy, Infrastructure, Geography, Hierarchy, and Time (WEIGHT): Reflections on the Plural Dimensions of Disaster Resilience. Risk Anal. 2020, 40, 43–67. [Google Scholar] [CrossRef]
- Links, J.M.; Schwartz, B.S.; Lin, S.; Kanarek, N.; Mitrani-Reiser, J.; Sell, T.K.; Watson, C.R.; Ward, D.; Slemp, C.; Burhans, R.; et al. COPEWELL: A Conceptual Framework and System Dynamics Model for Predicting Community Functioning and Resilience After Disasters. Disaster Med. Public Health Prep. 2018, 12, 127–137. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Ellingwood, B.R.; Cutler, H.; Gardoni, P.; Peacock, W.G.; van de Lindt, J.W.; Wang, N. The Centerville Virtual Community: A fully integrated decision model of interacting physical and social infrastructure systems. Sustain. Resilient Infrastruct. 2016, 1, 95–107. [Google Scholar] [CrossRef]
- Sharma, N.; Tabandeh, A.; Gardoni, P. Resilience analysis: A mathematical formulation to model resilience of engineering systems. Sustain. Resilient Infrastruct. 2018, 3, 49–67. [Google Scholar] [CrossRef]
- Tyler, S.; Moench, M. A framework for urban climate resilience. Clim. Dev. 2012, 4, 311–326. [Google Scholar] [CrossRef]
- Abdrabo, M.A.; Hassaan, M.A. An integrated framework for urban resilience to climate change—Case study: Sea level rise impacts on the Nile Delta coastal urban areas. Urban Clim. 2015, 14, 554–565. [Google Scholar] [CrossRef]
- Gardoni, P.; Murphy, C. Society-based design: Promoting societal well-being by designing sustainable and resilient infrastructure. Sustain. Resilient Infrastruct. 2020, 5, 4–19. [Google Scholar] [CrossRef]
- Li, G.; Kou, C.; Wang, Y.; Yang, H. System dynamics modelling for improving urban resilience in Beijing, China. Resour. Conserv. Recycl. 2020, 161, 104954. [Google Scholar] [CrossRef]
- Sharkey, T.C.; Nurre, S.G.; Nguyen, H.; Chow, J.H.; Mitchell, J.E.; Wallace, W.A. AWW Identification and Classification of Restoration Interdependencies in the Wake of Hurricane Sandy. J. Infrastruct. Syst. 2016, 22, 4015007. [Google Scholar] [CrossRef]
- Mcdaniels, T.; Chang, S.; Peterson, K.; Mikawoz, J.; Reed, D. Empirical Framework for Characterizing Infrastructure Failure Interdependencies. J. Infrastruct. Syst. 2007, 13, 175–184. [Google Scholar] [CrossRef]
- Lee, I.I.E.E.; Mitchell, J.E.; Wallace, W.A. Restoration of Services in Interdependent Infrastructure Systems: A Network Flows Approach. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 1303–1317. [Google Scholar] [CrossRef]
- Clark, S.S.; Seager, T.P.; Chester, M.V. A capabilities approach to the prioritization of critical infrastructure. Environ. Syst. Decis. 2018, 38, 339–352. [Google Scholar] [CrossRef]
- Gomez, C.; González, A.D.; Baroud, H.; Bedoya-Motta, C.D. Integrating Operational and Organizational Aspects in Interdependent Infrastructure Network Recovery. Risk Anal. 2019, 39, 1913–1929. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, X.; Zhang, J. A Review on Community Resilience to Natural Disaster. J. Catastrophology 2019, 34, 159–164. [Google Scholar] [CrossRef]
- Kim, Y.; Eisenberg, D.A.; Bondank, E.N.; Chester, M.V.; Mascaro, G.; Underwood, B.S. Fail-safe and safe-to-fail adaptation: Decision-making for urban flooding under climate change. Clim. Chang. 2017, 145, 397–412. [Google Scholar] [CrossRef]
- Ingold, K. Network Structures within Policy Processes: Coalitions, Power, and Brokerage in Swiss Climate Policy. Policy Stud. J. 2011, 39, 435–459. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, T.; Yan, T.; Dooley, K. Structural Investigation of Supply Networks: A Social Network Analysis Approach. J. Oper. Manag. 2011, 29, 194–211. [Google Scholar] [CrossRef]
- Colleoni, E.; Rozza, A.; Arvidsson, A. Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data. J. Commun. 2014, 64, 317–332. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Mehra, A.; Brass, D.J.; Labianca, G. Network Analysis in the Social Sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef]
- Burt, R.S.; Kilduff, M.; Tasselli, S. Social Network Analysis: Foundations and Frontiers on Advantage. Annu. Rev. Psychol. 2013, 64, 527–547. [Google Scholar] [CrossRef]
- Ma, L.L.; Yang, L.J.; Jiang, X.Y.; Huang, D. Analysis of business interruption risk factors of Chinese enterprises during flood disasters based on social network analysis. Clim. Risk Manag. 2021, 33, 100353. [Google Scholar] [CrossRef]
- Borgatti, S.P. Social Network Analysis, Two-Mode Concepts in BT—Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 8279–8291. [Google Scholar] [CrossRef]
- Kryvasheyeu, Y.; Chen, H.H.; Obradovich, N.; Moro, E.; Van Hentenryck, P.; Fowler, J.; Cebrian, M. Rapid assessment of disaster damage using social media activity. Sci. Adv. 2016, 2, e1500779. [Google Scholar] [CrossRef]
- Jones, C.; Borgatti, H.S.P. A General Theory of Network Governance: Exchange Conditions and Social Mechanisms. Acad. Manag. Rev. 1997, 22, 911–945. [Google Scholar] [CrossRef]
- Valente, T.W.; Coronges, K.; Lakon, C.; Costenbader, E. How Correlated are Network Centrality Measures? Connections 2008, 28, 16–26. [Google Scholar]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Otte, E.; Rousseau, R. Social Network Analysis: A Powerful Strategy, also for the Information Sciences. J. Inf. Sci. 2002, 28, 441–453. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management—Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- Bubeck, P.; Botzen, W.J.W.; Aerts, J.C.J.H. A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior. Risk Anal. 2012, 32, 1481–1495. [Google Scholar] [CrossRef] [PubMed]
- van Valkengoed, A.M.; Steg, L. Meta-analyses of factors motivating climate change adaptation behaviour. Nat. Clim. Chang. 2019, 9, 158–163. [Google Scholar] [CrossRef]
- Siebeneck, L.K.; Cova, T.J. Risk Communication after Disaster: Return Entry Following the 2008 Cedar River Flood. Nat. Hazards Rev. 2014, 15, 158–166. [Google Scholar] [CrossRef]
- Wu, J.; Huang, C.; Pang, M.; Wang, Z.; Yang, L.; FitzGerald, G.; Zhong, S. Planned sheltering as an adaptation strategy to climate change: Lessons learned from the severe flooding in Anhui Province of China in 2016. Sci. Total Environ. 2019, 694, 133586. [Google Scholar] [CrossRef]
- Masuya, A.; Dewan, A.; Corner, R.J. Population evacuation: Evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems. Nat. Hazards 2015, 78, 1859–1882. [Google Scholar] [CrossRef]
No. | Name | Address | Time | Source URL |
---|---|---|---|---|
1 | Rong Yuan Community | Huizi District, Zhengzhou City, Henan Province | 20 July 2021 | https://baijiahao.baidu.com/s?id=1706348093553095716andwfr=spiderandfor=pc (accessed on 4 March 2022) |
2 | Zhenghua Community | Jinshui District, Zhengzhou City, Henan Province | 22 July 2021 | http://yjj.henan.gov.cn/2021/10-21/2331497.htmlnews/6713.html (accessed on 4 March 2022) |
- | - | - | - | - |
265 | Tao Li Yuan Community | Hongjiang District, Huaihua City, Hunan Province | 29 June 2017 | https://news.sina.com.cn/o/2017-07-15/doc-ifyiamif3027345.shtml (accessed on 15 May 2022) |
No. | Influencing Factors | No. | Influencing Factors |
---|---|---|---|
1 | Road disruption | 15 | Crop destruction |
2 | Housing inundation | 16 | Landslide |
3 | Residents trapped | 17 | Gas supply interruption |
4 | Residents panic | 18 | Elevator interruption |
5 | Underground garage flooded | 19 | Drainage failure |
6 | Power interruption | 20 | Residents refused to evacuate |
7 | Water supply interruption | 21 | Vehicles flooded |
8 | Food and drinking water shortages | 22 | Greenery destruction |
9 | Medical services disrupted | 23 | Home appliances soaked |
10 | Enterprises flooded | 24 | Senior services disrupted |
11 | Silt accumulation | 25 | Crowd gathered |
12 | Garbage accumulation | 26 | Community offices flooded |
13 | Embankment failure | 27 | Rescuers injured |
14 | Communication interruption | 28 | School closed |
Id | Ds(i) | Ranking | Id | Bs(i) | Ranking | Id | Cs(i) | Ranking |
---|---|---|---|---|---|---|---|---|
I1 | 0.2188 | 1 | I2 | 0.053 | 1 | I1 | 0.9643 | 1 |
I2 | 0.199 | 2 | I1 | 0.0489 | 2 | I2 | 0.9643 | 1 |
I3 | 0.149 | 3 | I6 | 0.0447 | 3 | I6 | 0.9643 | 1 |
I6 | 0.137 | 4 | I10 | 0.0327 | 4 | I3 | 0.9 | 2 |
I10 | 0.1085 | 5 | I11 | 0.0311 | 5 | I11 | 0.9 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Huang, D.; Jiang, X.; Huang, X. Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model. Int. J. Environ. Res. Public Health 2022, 19, 11094. https://doi.org/10.3390/ijerph191711094
Ma L, Huang D, Jiang X, Huang X. Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model. International Journal of Environmental Research and Public Health. 2022; 19(17):11094. https://doi.org/10.3390/ijerph191711094
Chicago/Turabian StyleMa, Lianlong, Dong Huang, Xinyu Jiang, and Xiaozhou Huang. 2022. "Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model" International Journal of Environmental Research and Public Health 19, no. 17: 11094. https://doi.org/10.3390/ijerph191711094
APA StyleMa, L., Huang, D., Jiang, X., & Huang, X. (2022). Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model. International Journal of Environmental Research and Public Health, 19(17), 11094. https://doi.org/10.3390/ijerph191711094