Pollution, Ecological Risk and Source Identification of Heavy Metals in Sediments from the Huafei River in the Eastern Suburbs of Kaifeng, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Assessment of Contaminations in Sediment
2.3.1. Geo-Accumulation Index
2.3.2. Potential Ecological Risk Index (RI)
3. Results and Discussion
3.1. Physicochemical Properties and Heavy Metal Concentrations in the Sediments from the Huafei River
3.2. Pollution and Risk Assessment of Heavy Metals in the Sediments
3.2.1. Igeo
3.2.2. RI
3.3. Pollution Variation Characteristics of Heavy Metals in Sediments
3.4. Identification of Sources of Heavy Metals in Sediments
3.4.1. Correlation Analysis
3.4.2. Principal Component Analysis (PCA)
3.4.3. Cluster Analysis
3.4.4. Identification of Sources of Heavy Metals
3.5. Comparison with Those in Other Rivers of the World
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chabukdhara, M.; Nema, A.K. Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere 2012, 87, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Borah, S.S.; Kalamdhad, A.S. Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel, India. Ecol. Indic. 2020, 122, 107265. [Google Scholar] [CrossRef]
- Du, Y.; Wu, Q.; Kong, D.; Shi, Y.; Huang, X.; Luo, D.; Chen, Z.; Xiao, T.; Leung, J. Accumulation and translocation of heavy metals in water hyacinth: Maximising the use of green resources to remediate sites impacted by e-waste recycling activities. Ecol. Indic. 2020, 115, 106384. [Google Scholar] [CrossRef]
- Zeng, Y.; Bi, C.; Jia, J.; Deng, L.; Chen, Z. Impact of intensive land use on heavy metal concentrations and ecological risks in an urbanized river network of Shanghai. Ecol. Indic. 2020, 116, 106501. [Google Scholar] [CrossRef]
- Duodu, G.; Goonetilleke, A.; Ayoko, G. Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Mar. Pollut. Bull. 2017, 117, 523–531. [Google Scholar] [CrossRef]
- Kayembe, J.; Sivalingam, P.; Salgado, C.; Maliani, J.; Ngelinkoto, P.; Otamonga, J.; Mulaji, C.; Mubedi, J.; Poté, J. Assessment of water quality and time accumulation of heavy metals in the sediments of tropical urban rivers: Case of Bumbu River and Kokolo Canal, Kinshasa City, Democratic Republic of the Congo. J. Afr. Earth Sci. 2018, 147, 536–543. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, F.; Hu, P.; Hough, R.; Fu, Q.; Zhang, Z.; An, L.; Li, Y.; Li, K.; Liu, D.; et al. Heavy Metals in Sediment from the Urban and Rural Rivers in Harbin City, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 4313. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Ma, J.; Li, C.; Chen, X. Heavy Metal Pollution in Urban Soil from 1994 to 2012 in Kaifeng City, China. Water Air Soil Pollut. 2016, 227, 154. [Google Scholar] [CrossRef]
- Chai, L.; Wang, Y.; Wang, X.; Ma, L.; Cheng, Z.; Su, L. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China. Ecol. Indic. 2021, 125, 107507. [Google Scholar] [CrossRef]
- Liu, D.; Ma, J.; Sun, Y.; Li, Y. Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng City, China. Catena 2016, 139, 53–60. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Ge, S.; Jiao, Z.; Zhan, W.; Hou, R.; Ruan, X.; Pan, Y.; Wang, Y. Metal(loid)s spatial distribution, accumulation and potential health risk assessment in soil-wheat systems near a Pb/Zn smelter in Henan Province, central China. Int. J. Environ. Res. Public Health 2022, 19, 2527. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Do, D.D.; Nguyen, T.X.; Nguyen, V.N.; Nguyen, D.T.P.; Nguyen, M.H.; Truong, H.T.T.; Dong, H.P.; Le, A.H.; Bach, Q.V. Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam. Environ. Pollut. 2020, 256, 113412. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Dai, S.; Li., Y.; Tian., J.; Ren., Y. Analysis of Heavy Metal Sources in the Soil of Riverbanks Across an Urbanization Gradient. Int. J. Environ. Res. Public Health 2018, 15, 2175. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, W.; Hua, Y.; Pei, J.; Yang, Y. Ecological risk assessment and isotope source analysis of heavy metals accumulated in sediments of Kaifeng urban rivers. Acta Sci. Circumst. 2020, 40, 1321–1330. (In Chinese) [Google Scholar]
- Chen, Y.; Liu, D.; Ma, J.; Jin, B.; Peng, J.; He, X. Assessing the influence of immobilization remediation of heavy metal contaminated farmland on the physical properties of soil. Sci. Total Environ. 2021, 781, 146773. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ma, J.; Han, C.; Jiang, Y. Some problems in the application of potential ecological risk index method. Geogr. Res. 2020, 39, 1233–1241. (In Chinese) [Google Scholar]
- Workineh, T.A.; Tekleweini, G.; Xu, Q.; Tang, X.; Wang, J. Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China. Int. J. Environ. Res. Public Health 2018, 15, 2873. [Google Scholar]
- Zheng, X.; Chen, M.; Wang, J.; Li, F.; Liu, Y.; Liu, Y. Ecological risk assessment of heavy metals in the vicinity of Tungsten Mining Areas, Southern Jiangxi Province. Soil Sediment. Contam. 2020, 29, 665–679. [Google Scholar] [CrossRef]
- Han, J. Pollution and migration of heavy metals of the soil-wheat system at sewage irrigation region of Huafei river in Kaifeng city. Master’s Thesis, Henan University, Kaifeng, China, 2003. (In Chinese). [Google Scholar]
- Li, Y.; Ma, J.; Liu, D.; Sun, Y.; Chen, Y. Assessment of Heavy Metal Pollution and Potential Ecological Risks of Urban Soils in Kaifeng City, China. Environ. Sci. 2015, 36, 1037–1044. (In Chinese) [Google Scholar]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ. 2022, 806, 150646. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Ma, J.; Lv, C.; Li, W. Soil animals and their responses to soil heavy metal pollution in sewage irrigated farmland:A case study of the sewage irrigated area of Huafei River, Kaifeng City. Geogr. Res. 2010, 29, 617–628. [Google Scholar]
- Du, P.; Ma, J.; Han, J. Potential ecological risk assessment of heavy metals in soil of Fengfeng River sewage irrigation area. Earth Environ. 2009, 37, 436–440. (In Chinese) [Google Scholar]
- Wang, H.; Zhang, J.; Ding., S.; Guo, T.; Fu, X. Distribution characteristics, sources identification and risk assessment of heavy metals in surface sediments of urban rivers in Kaifeng. Acta Sci. Circumst. 2016, 36, 4520–4530. (In Chinese) [Google Scholar]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Atibu, E.; Lacroix, P.; Sivalingam, P.; Ray, N.; Poté, J. High contamination in the areas surrounding abandoned mines and mining activities: An impact assessment of the Dilala, Luilu and Mpingiri Rivers, Democratic Republic of the Congo. Chemosphere 2017, 191, 1008–1020. [Google Scholar] [CrossRef]
- Niu, Y.; Jiang, X.; Wang, K.; Xia, J.; Jiao, W.; Niu, Y.; Yu, H. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci. Total Environ. 2020, 700, 134509. [Google Scholar] [CrossRef]
- China Environmental Monitoring Terminal. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Xu, J.; Xu, L.; Zheng, L.; Liu, B.; Liu, J.; Wang, X. Distribution, risk assessment, and source analysis of heavy metals in sediment of rivers located in the hilly area of southern China. J. Soil Sediment. 2019, 19, 3608–3619. [Google Scholar] [CrossRef]
- Kaiser, F.H. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Dalal, S.G.; Shirodkar, P.V.; Jagtap, T.G.; Naik, B.G.; Rao, G.S. Evaluation of significant sources influencing the variation of water quality of Kandla creek, Gulf of Katchchh, using PCA. Environ. Monit. Assess. 2010, 163, 49–56. [Google Scholar] [CrossRef]
- Luo, L.; Mei, K.; Qu, L.; Zhang, C.; Chen, H.; Wang, S.; Di, D.; Huang, H.; Wang, Z.; Xia, F.; et al. Assessment of the Geographical Detector Method for investigating heavy metal source apportionment in an urban watershed of Eastern China. Sci. Total Environ. 2019, 653, 714. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.G.P.W.; Kooistra, L. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681. [Google Scholar] [CrossRef]
- Ji, Z.; Zhang, H.; Zhang, Y.; Chen, T.; Long, Z.; Li, M.; Pei, Y. Distribution, ecological risk and source identification of heavy metals in sediments from the Baiyangdian Lake, Northern China. Chemosphere 2019, 237, 124425. [Google Scholar] [CrossRef] [PubMed]
- Smichowski, P.; Gomez, D.; Frazzoli, C.; Caroli, S. Traffic-Related Elements in Airborne Particulate Matter. Appl. Spectrosc. Rev. 2008, 43, 23–49. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment. Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, R.; Gan, Y.; Cai, L.; Freidenreich, A.; Wang, K.; Guo, T. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2018, 651, 3127–3138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, Y.; Li, H.; Tu, Y.; Liu, B.; Yang, Z. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci. Total Environ. 2018, 645, 235–243. [Google Scholar] [CrossRef]
- Tian, K.; Wu, Q.; Liu, P.; Hu, W.; Huang, B.; Shi, B.; Zhou, Y.; Kwon, B.O.; Choi, K.; Ryu, J.; et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2020, 136, 105512. [Google Scholar] [CrossRef]
- Yin, X.; Wei, R.; Chen, H.; Zhu, C.; Liu, Y.; Wen, H.; Guo, Q.; Ma, J. Cadmium isotope constraints on heavy metal sources in a riverine system impacted by multiple anthropogenic activities. Sci. Total Environ. 2021, 750, 141233. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Wang, L.; Li, L.; Liang, T.; Zhang, Y.; Ma, C.; Xing, B. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Randy, A.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef]
- Xiao, R.; Bai, J.; Huang, L.; Zhang, H.; Cui, B.; Liu, X. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology 2013, 22, 1564–1575. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Dampare, S.B.; Islam, M.A.; Suzuki, S. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environ. Monit. Assess. 2015, 187, 4075. [Google Scholar] [CrossRef] [PubMed]
- Hejabi, A.T.; Basavarajappa, H.T.; Karbassi, A.R.; Monavari, S.M. Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ. Monit. Assess. 2011, 182, 1–13. [Google Scholar] [CrossRef]
- Yang, Y. Heavy metal pollution and potential ecological risk assessment of river sediment in different functional areas of Kaifeng city. Master’s Thesis, Henan University, Kaifeng, China, 2017. (In Chinese). [Google Scholar]
- Kashif, A.; Said, M.; Wajid, A.; Ishtiaq, J.A.K.; Atta, R. Occurrence, source identification and potential risk evaluation of heavy metals in sediments of the Hunza River and its tributaries, Gilgit-Baltistan. Environ. Technol. Innov. 2020, 18, 100700. [Google Scholar]
The Geo-Accumulation Index (Igeo) | Class | Pollution Level |
---|---|---|
Igeo ≤ 0 | 0 | Unpolluted |
0 < Igeo ≤ 1 | 1 | From unpolluted to moderately polluted |
1 < Igeo ≤ 2 | 2 | Moderately polluted |
2 < Igeo ≤ 3 | 3 | From moderately to strongly polluted |
3 < Igeo ≤ 4 | 4 | Strongly polluted |
4 < Igeo ≤ 5 | 5 | From strongly to extremely polluted |
Igeo > 5 | 6 | Extremely polluted |
Ecological Risk Levels of a Single Metal | RI Value | Ecological Risk Levels to the Environment | |
---|---|---|---|
<40 | Low ecological risk | <110 | Low ecological risk |
40~80 | Moderate ecological risk | 110~220 | Moderate ecological risk |
80~160 | Considerable ecological risk | 220~440 | Considerable ecological risk |
160~320 | High ecological risk | ≥440 | Very high ecological risk |
≥320 | Very high ecological risk |
pH | TN (mg·kg−1) | TP (mg·kg−1) | OM (mg·kg−1) | |
---|---|---|---|---|
Average | 7.73 | 2089.76 | 786.58 | 5932.59 |
Maximum | 8.23 | 5401.84 | 1496.07 | 13,122.10 |
Minimum | 7.31 | 587.65 | 344.81 | 472.63 |
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Average | 26.62 | 50.76 | 97.08 | 292.37 | 10.01 | 50.13 | 238.59 | 1335.12 |
Median | 9.55 | 11.72 | 102.05 | 137.23 | 3.20 | 43.61 | 95.32 | 523.95 |
Maximum | 100.04 | 371.47 | 160.97 | 866.90 | 56.92 | 101.35 | 745.76 | 4206.97 |
Minimum | 4.91 | 0.15 | 23.13 | 7.70 | 0.40 | 11.33 | 2.80 | 50.00 |
SD | 30.18 | 89.11 | 31.23 | 275.65 | 13.68 | 21.51 | 262.88 | 1394.02 |
CV(%) | 113 | 176 | 32 | 94 | 137 | 43 | 110 | 104 |
Background of Chinese fluvo-aquic soil | 9.30 | 0.09 | 64.81 | 22.90 | 0.032 | 28.10 | 20.60 | 67.80 |
Samping Points | Cd | Cr | Cu | Ni | Pb | Zn | Hg | As | RI | RI Level |
---|---|---|---|---|---|---|---|---|---|---|
1 | 83.42 | 1.22 | 4.31 | 3.81 | 2.02 | 2.24 | 652.60 | 9.72 | 759.34 | Very high |
2 | 163.88 | 0.71 | 1.68 | 2.02 | 0.68 | 0.74 | 1060.19 | 5.73 | 1235.63 | Very high |
3 | 50.47 | 2.36 | 7.34 | 7.41 | 2.49 | 2.46 | 698.61 | 5.66 | 776.81 | Very high |
4 | 150.05 | 2.20 | 4.46 | 7.05 | 2.41 | 2.38 | 541.47 | 5.29 | 715.30 | Very high |
5 | 123,823.82 | 2.96 | 99.71 | 8.50 | 79.91 | 25.53 | 9290.63 | 7.34 | 133,338.38 | Very high |
6 | 26,556.22 | 3.11 | 98.52 | 10.63 | 97.04 | 29.96 | 12,124.13 | 5.69 | 38,925.30 | Very high |
7 | 87,100.00 | 3.19 | 132.64 | 10.52 | 122.45 | 31.24 | 12,199.62 | 20.86 | 99,620.51 | Very high |
8 | 1545.36 | 1.42 | 13.61 | 4.91 | 10.53 | 4.21 | 1485.98 | 18.67 | 3084.70 | Very high |
9 | 22,482.55 | 3.72 | 130.39 | 13.08 | 150.52 | 49.50 | 28,908.59 | 5.65 | 51,744.02 | Very high |
10 | 28,851.26 | 4.11 | 155.27 | 14.34 | 178.78 | 61.56 | 71,146.54 | 5.28 | 100,417.14 | Very high |
11 | 27,645.11 | 3.91 | 124.38 | 13.47 | 158.43 | 62.05 | 33,870.61 | 5.69 | 61,883.64 | Very high |
12 | 3213.45 | 2.88 | 19.91 | 7.96 | 21.12 | 8.46 | 4638.47 | 7.33 | 7919.60 | Very high |
13 | 4395.60 | 3.36 | 11.48 | 6.88 | 18.08 | 7.57 | 7937.35 | 13.04 | 12,393.36 | Very high |
14 | 3416.67 | 3.49 | 38.96 | 8.45 | 26.54 | 12.42 | 12,375.63 | 6.17 | 15,888.32 | Very high |
15 | 17,298.11 | 3.55 | 172.19 | 15.95 | 134.31 | 42.64 | 31,768.86 | 6.69 | 49,442.29 | Very high |
16 | 16,201.86 | 3.65 | 108.95 | 11.33 | 94.01 | 27.67 | 17,757.24 | 10.82 | 34,215.53 | Very high |
17 | 27,816.55 | 4.97 | 189.28 | 18.03 | 181.01 | 56.57 | 38,051.43 | 82.91 | 66,400.76 | Very high |
18 | 4719.18 | 2.35 | 21.34 | 6.35 | 20.27 | 6.44 | 3356.16 | 107.57 | 8239.66 | Very high |
19 | 4427.86 | 2.72 | 28.54 | 6.65 | 25.15 | 7.18 | 2574.30 | 31.76 | 7104.16 | Very high |
20 | 3154.05 | 2.61 | 27.52 | 6.92 | 32.49 | 6.98 | 2723.45 | 59.18 | 6013.20 | Very high |
21 | 482.37 | 2.69 | 27.43 | 7.29 | 8.65 | 7.68 | 2400.77 | 90.72 | 3027.60 | Very high |
22 | 1979.37 | 3.55 | 55.97 | 7.92 | 10.54 | 7.78 | 1875.00 | 76.45 | 4016.58 | Very high |
23 | 416.25 | 3.84 | 31.39 | 7.60 | 7.57 | 6.54 | 493.95 | 35.10 | 1002.23 | Very high |
24 | 99.60 | 3.33 | 26.77 | 7.00 | 4.87 | 2.80 | 2375.63 | 63.58 | 2583.57 | Very high |
average | 16,919.71 | 3.00 | 63.84 | 8.92 | 57.91 | 19.69 | 12,512.80 | 28.62 | 29,614.48 | Very high |
Cd | Cr | Cu | Ni | Pb | Zn | Hg | As | |
---|---|---|---|---|---|---|---|---|
Low | 24 | 14 | 24 | 15 | 19 | 18 | ||
Moderate | 1 | 1 | 1 | 5 | 3 | |||
Considerable | 3 | 7 | 6 | 3 | ||||
High | 1 | 2 | 2 | |||||
Very high | 19 | 24 |
Pearson Correlation | Cd | Cr | Cu | Ni | Pb | Zn | Hg | As |
---|---|---|---|---|---|---|---|---|
Cd | 1 | |||||||
Cr | 0.242 | 1 | ||||||
Cu | 0.539 ** | 0.719 ** | 1 | |||||
Ni | 0.332 | 0.837 ** | 0.934 ** | 1 | ||||
Pb | 0.505 * | 0.670 ** | 0.961 ** | 0.910 ** | 1 | |||
Zn | 0.446 * | 0.689 ** | 0.933 ** | 0.907 ** | 0.985 ** | 1 | ||
Hg | 0.267 | 0.627 ** | 0.819 ** | 0.819 ** | 0.883 ** | 0.908 ** | 1 | |
As | −0.204 | 0.136 | −0.093 | −0.046 | −0.181 | −0.188 | −0.197 | 1 |
Elements | 1 | 2 | 3 |
---|---|---|---|
Cd | 0.221 | 0.965 | −0.098 |
Cr | 0.827 | 0.062 | 0.294 |
Cu | 0.904 | 0.368 | −0.022 |
Ni | 0.963 | 0.134 | 0.042 |
Pb | 0.920 | 0.313 | −0.140 |
Zn | 0.937 | 0.239 | −0.153 |
Hg | 0.913 | 0.029 | −0.209 |
As | −0.050 | −0.095 | 0.968 |
Eigenvalue (total) | 5.038 | 1.253 | 1.122 |
% of total variance | 62.974 | 15.659 | 14.020 |
% of cumulative | 62.974 | 78.633 | 92.653 |
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Reference | |
---|---|---|---|---|---|---|---|---|---|
Huafei River, China | 26.62 | 50.76 | 97.08 | 292.37 | 10.01 | 50.13 | 238.59 | 1335.12 | This study |
Wen-Rui Tang River, China | 17.7 | 193 | 310 | 115 | 1362 | Xia et al. [46] (2018) | |||
Shiqiao River, China | 2.79 | 133 | 100 | 66 | 96 | 327 | Xiao et al. [47] (2013) | ||
Buriganga River, Bangladesh | 19.25 | 7.29 | 1399 | 61.86 | 50.00 | 68.36 | 54.54 | Bhuiyan et al. [48] (2015) | |
Kabini River, India | 254,520 | 110,550 | 91,120 | 11,670 | Hejabi et al. [49] (2011) | ||||
Huangbian River, China | 7.49 | 0.35 | 46.46 | 30.09 | 22.71 | 24.12 | 90.30 | Yang [50] (2017) | |
Majia River, China | 12.58 | 0.33 | 64.85 | 26.21 | 21.10 | 20.69 | 114.05 | Yang [50] (2017) | |
Liaohe River, China | 9.88 | 1.20 | 35.06 | 17.82 | 17.73 | 10.57 | 50.24 | Ke et al. [40] (2017) | |
Hunza River, Pakistan | 1.11 | 62.3 | 36.4 | 52.6 | 14.9 | 54.3 | Kashif et al. [51] (2020) | ||
Brisbane River, Australia | 3.9 | 0.3 | 15 | 29 | 0.4 | 15.3 | 25.6 | 106.6 | Duodu et al. [5] (2017) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, B.; Wang, J.; Lou, W.; Wang, L.; Xu, J.; Pan, Y.; Peng, J.; Liu, D. Pollution, Ecological Risk and Source Identification of Heavy Metals in Sediments from the Huafei River in the Eastern Suburbs of Kaifeng, China. Int. J. Environ. Res. Public Health 2022, 19, 11259. https://doi.org/10.3390/ijerph191811259
Jin B, Wang J, Lou W, Wang L, Xu J, Pan Y, Peng J, Liu D. Pollution, Ecological Risk and Source Identification of Heavy Metals in Sediments from the Huafei River in the Eastern Suburbs of Kaifeng, China. International Journal of Environmental Research and Public Health. 2022; 19(18):11259. https://doi.org/10.3390/ijerph191811259
Chicago/Turabian StyleJin, Bingyan, Jinling Wang, Wei Lou, Liren Wang, Jinlong Xu, Yanfang Pan, Jianbiao Peng, and Dexin Liu. 2022. "Pollution, Ecological Risk and Source Identification of Heavy Metals in Sediments from the Huafei River in the Eastern Suburbs of Kaifeng, China" International Journal of Environmental Research and Public Health 19, no. 18: 11259. https://doi.org/10.3390/ijerph191811259
APA StyleJin, B., Wang, J., Lou, W., Wang, L., Xu, J., Pan, Y., Peng, J., & Liu, D. (2022). Pollution, Ecological Risk and Source Identification of Heavy Metals in Sediments from the Huafei River in the Eastern Suburbs of Kaifeng, China. International Journal of Environmental Research and Public Health, 19(18), 11259. https://doi.org/10.3390/ijerph191811259