Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Data Segmentation
2.3. Pre-Processing
2.4. Feature Extraction
2.4.1. Entropy Based on Time Domain: Approximate Entropy, Sample Entropy, Permutation Entropy
2.4.2. Entropy Based on Frequency Domain: Spectral Entropy
2.4.3. Entropy Based on Time-Frequency Domain: Wavelet Entropy
2.5. Classification
2.6. Post-Processing
3. Results
3.1. Evaluation Metrics
3.2. Result
3.2.1. Classification Result
3.2.2. Prediction Result
4. Discussion
4.1. Comparison with Other Approaches
4.2. Practical Application
4.3. Limitation of the Current Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, R.; Varnosfaderani, S.M.; Makke, O.; Sarhan, N.J.; Asano, E.; Luat, A.; Alhawari, M.; IEEE. Comprehensive Analysis of EEG Datasets for Epileptic Seizure Prediction. In Proceedings of the IEEE International Symposium on Circuits and Systems (IEEE ISCAS), Daegu, Korea, 22–28 May 2021. [Google Scholar]
- Maimaiti, B.; Meng, H.M.; Lv, Y.D.; Qiu, J.Q.; Zhu, Z.P.; Xie, Y.Y.; Li, Y.; Cheng, Y.; Zhao, W.X.; Liu, J.Y.; et al. An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field. Neuroscience 2022, 481, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Peng, F.; Chen, C.; Li, W.; Zhang, X.; Wang, X.; Zhou, W. Research progress of epileptic seizure predictions based on electroencephalogram signals. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Chin. J. Biomed. Eng. 2021, 38, 1193–1202. [Google Scholar]
- Salvatierra, N.; Sakanishi, R.; Flores, C. Epileptic Seizure Prediction from Scalp EEG Using Ratios of Spectral Power. In Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 21–23 October 2020. [Google Scholar]
- Zhang, Y.; Guo, Y.; Yang, P.; Chen, W.; Lo, B. Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network. IEEE J. Biomed. Health Inform. 2020, 24, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.M.; Khalid, S.; Bashir, S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol. Med. 2021, 136, 12. [Google Scholar]
- CHB-MIT Scalp EEG Database. Available online: https://physionet.org/content/chbmit/1.0.0/ (accessed on 10 March 2022).
- Suhail, T.A.; Indiradevi, K.P.; Suhara, E.M.; Poovathinal, S.A.; Anitha, A. Performance Analysis of Mother Wavelet Functions and Thresholding Methods for Denoising EEG Signals during Cognitive Tasks. In Proceedings of the 2020 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, 17–19 December 2020. [Google Scholar]
- Niu, Y.; Cao, R.; Wang, H.Y.; Li, C.G.; Zhou, M.N.; Guo, Y.X.; Wang, B.; Yan, P.F.; Xiang, J. Permutation Fuzzy Entropy-An Index for the Analysis of Epileptic Electroencephalogram. J. Med. Imaging Health Inform. 2019, 9, 637–645. [Google Scholar] [CrossRef]
- Sukriti; Chakraborty, M.; Mitra, D.; IEEE. Epilepsy Seizure Detection using Non-linear and DWT-based Features. In Proceedings of the 4th IEEE International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019. [Google Scholar]
- Zhang, J.; Wei, Z.C.; Zou, J.Z.; Fu, H. Automatic epileptic EEG classification based on differential entropy and attention model. Eng. Appl. Artif. Intell. 2020, 96, 10. [Google Scholar] [CrossRef]
- Bai, Y.; Li, X. Nonlinear Neural Dynamics. In EEG Signal Processing and Feature Extraction; Hu, L., Zhang, Z., Eds.; Springer Nature: Singapore, 2019. [Google Scholar]
- Yan, J.; Li, J.; Xu, H.; Yu, Y.; Pan, L.; Cheng, X.; Tan, S. EEG Seizure Prediction Based on Empirical Mode Decomposition and Convolutional Neural Network. In Proceedings of the 14th International Conference on Brain Informatics (BI), Virtual Event, 17–19 September 2021. [Google Scholar]
- Alotaiby, T.N.; Alshebeili, S.A.; Alotaibi, F.M.; Alrshoud, S.R. Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals. Comput. Intell. Neurosci. 2017, 2017, 1240323. [Google Scholar] [CrossRef] [PubMed]
- Agboola, H.; Solebo, C.; Aribike, D.; Lesi, A.; Susu, A. Seizure Prediction with Adaptive Feature Representation Learning. J. Neurol. Neurosci. 2019, 10, 294. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Ding, J.; Kong, W.Z.; Liu, Y.; Wang, Q.; Jiang, T.J. Epilepsy prediction through optimized multidimensional sample entropy and Bi-LSTM. Biomed. Signal Process. Control 2021, 64, 9. [Google Scholar] [CrossRef]
- Rusnac, A.L.; Grigore, O.; IEEE. Intelligent Seizure Prediction System Based on Spectral Entropy. In Proceedings of the 14th International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 11–12 July 2019. [Google Scholar]
- Daoud, H.; Bayoumi, M.A. Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Jana, R.; Mukherjee, I. Deep learning based efficient epileptic seizure prediction with EEG channel optimization. Biomed. Signal Process. Control 2021, 68, 8. [Google Scholar] [CrossRef]
- Yan, J.Z.; Li, J.N.; Xu, H.X.; Yu, Y.C.; Xu, T.Y. Seizure Prediction Based on Transformer Using Scalp Electroencephalogram. Appl. Sci. 2022, 12, 4158. [Google Scholar] [CrossRef]
Patient ID | Gender * | Age | Number of Total Seizures | Number of Seizures Selected | |
---|---|---|---|---|---|
InT = 30 min | InT = 40 min | ||||
chb01 | F | 11 | 7 | 4 | 4 |
chb02 | M | 11 | 3 | 2 | 2 |
chb04 | M | 22 | 4 | 2 | 2 |
chb05 | F | 7 | 5 | 2 | 4 |
chb06 | F | 1.5 | 10 | 5 | 5 |
chb07 | F | 14.5 | 3 | 3 | 3 |
chb09 | F | 10 | 4 | 3 | 3 |
chb10 | M | 3 | 7 | 4 | 5 |
chb12 | F | 2 | 40 | 3 | 4 |
chb14 | F | 9 | 8 | 2 | 2 |
chb15 | M | 16 | 20 | 5 | 4 |
chb22 | F | 9 | 3 | 2 | 2 |
chb23 | F | 6 | 7 | 2 | 2 |
Total | -- | -- | 121 | 39 | 42 |
Patient ID | Acc * | Sen * | FPR * | F1-Score |
---|---|---|---|---|
chb01 | 99.37% | 99.58% | 0.008 | 99.38% |
chb02 | 97.92% | 99.17% | 0.033 | 97.94% |
chb04 | 95.83% | 95.00% | 0.033 | 95.80% |
chb05 | 97.08% | 97.50% | 0.033 | 97.10% |
chb06 | 81.00% | 78.67% | 0.163 | 80.68% |
chb07 | 94.72% | 96.11% | 0.067 | 94.79% |
chb09 | 95.56% | 95.00% | 0.039 | 95.53% |
chb10 | 92.71% | 92.92% | 0.075 | 92.72% |
chb12 | 92.78% | 93.89% | 0.083 | 92.86% |
chb14 | 76.67% | 79.17% | 0.258 | 77.24% |
chb15 | 81.33% | 80.67% | 0.180 | 81.21% |
chb22 | 92.50% | 92.50% | 0.075 | 92.50% |
chb23 | 95.42% | 94.17% | 0.033 | 95.36% |
Average | 91.76% | 91.87% | 0.083 | 91.78% |
Patient ID | Acc * | Sen * | FPR * | F1-Score |
---|---|---|---|---|
chb01 | 99.79% | 100.00% | 0.004 | 99.79% |
chb02 | 95.83% | 96.67% | 0.050 | 95.87% |
chb04 | 97.08% | 95.83% | 0.017 | 97.05% |
chb05 | 95.83% | 97.08% | 0.054 | 95.88% |
chb06 | 81.33% | 76.33% | 0.137 | 80.35% |
chb07 | 94.72% | 97.22% | 0.078 | 94.85% |
chb09 | 95.56% | 96.67% | 0.056 | 95.60% |
chb10 | 93.00% | 90.67% | 0.047 | 92.83% |
chb12 | 82.29% | 82.92% | 0.183 | 82.40% |
chb14 | 81.67% | 77.50% | 0.142 | 80.87% |
chb15 | 97.08% | 97.08% | 0.029 | 97.08% |
chb22 | 92.50% | 90.83% | 0.058 | 92.37% |
chb23 | 95.83% | 95.83% | 0.042 | 95.83% |
Average | 92.50% | 91.90% | 0.069 | 92.37% |
Classification Method | InT = 30 min | InT = 40 min | ||||
---|---|---|---|---|---|---|
Acc * | Sen * | FPR * | Acc * | Sen * | FPR * | |
SVM | 89.41% | 88.33% | 0.095 | 89.66% | 85.62% | 0.063 |
RF | 90.55% | 90.55% | 0.094 | 91.45% | 90.77% | 0.079 |
) | 90.33% | 90.18% | 0.095 | 91.15% | 90.68% | 0.084 |
RF + GBDT | 92.00% | 91.87% | 0.083 | 92.50% | 91.90% | 0.069 |
Patient ID | Number of Seizures | Number of Predictions | Number of Missed Predictions | Number of False Alarms |
---|---|---|---|---|
chb01 | 4 | 4 | 0 | 0 |
chb02 | 2 | 2 | 0 | 0 |
chb04 | 2 | 2 | 0 | 0 |
chb05 | 2 | 2 | 0 | 0 |
chb06 | 5 | 5 | 0 | 0 |
chb07 | 3 | 3 | 0 | 0 |
chb09 | 3 | 3 | 0 | 0 |
chb10 | 4 | 4 | 0 | 0 |
chb12 | 3 | 3 | 0 | 0 |
chb14 | 2 | 2 | 0 | 0 |
chb15 | 5 | 4 | 1 | 1 |
chb22 | 2 | 2 | 0 | 0 |
chb23 | 2 | 2 | 0 | 0 |
Total | 39 | 38 | 1 | 1 |
Patient ID | Number of Seizures | Number of Predictions | Number of Missed Predictions | Number of False Alarms |
---|---|---|---|---|
chb01 | 4 | 4 | 0 | 0 |
chb02 | 2 | 2 | 0 | 0 |
chb04 | 2 | 2 | 0 | 0 |
chb05 | 4 | 4 | 0 | 0 |
chb06 | 5 | 5 | 0 | 0 |
chb07 | 3 | 3 | 0 | 0 |
chb09 | 3 | 3 | 0 | 0 |
chb10 | 5 | 5 | 0 | 0 |
chb12 | 4 | 4 | 0 | 1 |
chb14 | 2 | 2 | 0 | 0 |
chb15 | 4 | 4 | 0 | 0 |
chb22 | 2 | 2 | 0 | 0 |
chb23 | 2 | 2 | 0 | 0 |
Total | 42 | 42 | 0 | 1 |
Authors | Year | Classifier | Acc * | Sen * | FPR * |
---|---|---|---|---|---|
Alotaiby et al. [14] | 2017 | LDA | - | 89% | 0.390 |
Agboola et al. [15] | 2019 | SVM | - | 87.26% | 0.080 |
Zhang et al. [16] | 2021 | Bi-LSTM | 80.09% | - | 0.260 |
Rusnac et al. [17] | 2019 | MLP | 91.14% | 91.37% | 0.090 |
Daoud et al. [18] | 2019 | DCAE + Bi-LSTM + CS | 99.66% | 99.72% | 0.004 |
Jana et al. [19] | 2021 | CNN | 99.47% | 97.83% | 0.0764 |
Yan et al. [20] | 2022 | Transformer | - | 96.01% | 0.047 |
This work (InT = 30 min) | - | RF + GBDT | 91.76% | 91.87% | 0.083 |
This work (InT = 40 min) | - | RF + GBDT | 92.50% | 91.90% | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Lin, M.; Xu, T. Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree. Int. J. Environ. Res. Public Health 2022, 19, 11326. https://doi.org/10.3390/ijerph191811326
Xu X, Lin M, Xu T. Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree. International Journal of Environmental Research and Public Health. 2022; 19(18):11326. https://doi.org/10.3390/ijerph191811326
Chicago/Turabian StyleXu, Xin, Maokun Lin, and Tingting Xu. 2022. "Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree" International Journal of Environmental Research and Public Health 19, no. 18: 11326. https://doi.org/10.3390/ijerph191811326
APA StyleXu, X., Lin, M., & Xu, T. (2022). Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree. International Journal of Environmental Research and Public Health, 19(18), 11326. https://doi.org/10.3390/ijerph191811326