Cardiorespiratory Fitness and Physical Activity among Children and Adolescents: 3-Year Longitudinal Study in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Sample
2.2. Eligibility Criterion
2.3. Procedures
2.4. Instruments
2.4.1. Dependent Variable
2.4.2. Independent Variable
2.4.3. Characterization Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, N. Aerobic fitness of children and adolescents. J. Pediatr. 2006, 82, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Acta 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, J.L.; Pandey, A.; Ayers, C.R.; McGavock, J.M.; Sénéchal, M.; Berry, J.D.; Patel, K.V.; McGuire, D.K. Aerobic fitness and adherence to guideline recommended minimum physical activity among ambulatory patients with type 2 diabetes mellitus. Diabetes Care 2019, 42, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Carbone, S.; Del Buono, M.G.; Ozemek, C.; Lavie, C.J. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog. Cardiovasc. Dis. 2019, 62, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gómez, I.; Martín-Manjarrés, S.; Martín-García, M.; Vila-Maldonado, S.; Gil-Agudo, Á.; Alegre, L.M.; Ara, I. Cardiorespiratory fitness and arm bone mineral health in young males with spinal cord injury: The mediator role of lean mass. J. Sports Sci. 2019, 37, 717–725. [Google Scholar] [CrossRef]
- Santana, C.C.A.; Azevedo, L.B.; Cattuzzo, M.T.; Hill, J.O.; Andrade, L.P.; Prado, W.L. Physical fitness and academic performance in youth: A systematic review. Scand. J. Med. Sci. Sports 2017, 27, 579–603. [Google Scholar] [CrossRef]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef]
- Gonçalves, E.C.A.; Alves Junior, C.A.S.; Silva, V.S.; Pelegrini, A.; Silva, D.A.S. Anthropometric indicators of body fat as discriminators of low levels of cardiorespiratory fitness in adolescents. J. Pediatr. Nurs. 2022, 62, 43–50. [Google Scholar] [CrossRef]
- Gonçalves, E.C.A.; Fernandes, R.; Alves Junior, C.A.S.; Silva, D.A.S.; Trindade, E.B.S.M. Oxygen uptake and indicators of obesity: Meta-analysis including 17,604 adolescents. Rev. Bras. Med. Esporte 2021, 27, 621–626. [Google Scholar] [CrossRef]
- Gonçalves, E.C.A.; Nunes, H.E.G.; Silva, D.A.S. Clusters of anthropometric indicators of body fat associated with maximum oxygen uptake in adolescents. PLoS ONE 2018, 13, e0193965. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, E.C.A.; Silva, D.A.S. Clusters of health risk factors associated with cardiorespiratory fitness among adolescents. Eur. J. Prev. Cardiol. 2018, 26, 883–884. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E.C.A.; Nunes, H.E.G.; Silva, D.A.S. Prevalence and Factors Associated with Low Aerobic Performance Levels in Adolescents: A Systematic Review. Curr. Pediatr. Rev. 2015, 11, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Hogstrom, G.; Nordstrom, A.; Nordstrom, P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: A nationwide cohort study in men. Eur. Heart. J. 2014, 35, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports. Med. 2019, 53, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.C.; Alves Junior, C.A.S.; Lima, T.R.; Silva, A.F.; Moraes, M.S.; Zanlorenci, S.; Castro, J.A.C.; Silva, D.A.S. Prevalence of Brazilian children and adolescents who met health criteria for aerobic fitness: Systematic review update for Report Card Brazil Project. Rev. Bras. Cineantropom Desempenho Hum. 2021, 23, e78858. [Google Scholar] [CrossRef]
- Gonçalves, E.C.A.; Alves Junior, C.A.S.; Nunes, H.E.G.; Souza, M.C.; Silva, D.A.S. Prevalence of Brazilian children and youth who meet health criteria for cardiorespiratory fitness: Systematic review. Rev. Bras. Cineantropom Desempenho Hum. 2018, 20, 1. [Google Scholar] [CrossRef]
- Borges, L.L.; Silva, D.A.S.; Silva, A.F.; Barbosa, G.C.F.S.; Pedroso, M.S.; Pereira, E.V.; Farias, J.M. Low aerobic fitness among adolescents: Prevalence and associated factors. Motricidade 2021, 17, 129–139. [Google Scholar]
- Silva, D.A.S.; Teixeira, D.M.; Oliveira, G.; Petroski, E.L.; Farias, J.M. Aerobic fitness in adolescents in southern Brazil: Association with sociodemographic aspects, lifestyle and nutritional status. Rev. Andal. Med. Deporte 2016, 9, 17–22. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20-meter shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Crocker, P.R.; Bailey, D.A.; Faulkner, R.A.; Kowalski, K.C.; McGrath, R. Measuring general levels of physical activity: Preliminary evidence for the Physical Activity Questionnaire for Older Children. Med. Sci. Sports Exerc. 1997, 29, 1344–1349. [Google Scholar] [CrossRef]
- Kowlaski, K.C.; Crocker, P.R.E.; Kowalski, N.P. Convergent validity of the physical activity questionnaire for adolescents. Pediatr. Exerc. Sci. 1997, 9, 342–352. [Google Scholar] [CrossRef]
- Guedes, D.P.; Guedes, J.E.R.P. Medida da atividade física em jovens brasileiros: Reprodutibilidade e validade do PAQ-C e do PAQ-A. Rev. Bras. Med. Esporte 2015, 21, 425–432. [Google Scholar] [CrossRef]
- Silva, R.C.R.; Malina, R.M. Nível de atividade física em adolescentes do Município de Niterói, Cad. Saúde Pública 2000, 16, 1091–1097. [Google Scholar] [CrossRef]
- Norton, K.; Olds, T. Antropométrica; Artmed: Porto Alegre, Brazil, 2005. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youths. Hum. Biol. 1988, 60, 709–723. [Google Scholar] [PubMed]
- Khamis, H.J.; Roche, A.F. Predicting adult stature without using skeletal age: The Khamis-Roche method. Pediatrics 1994, 94, 504–507. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Armstrong, N.; Tomkinson, G.; Ekelund, U. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br. J. Sports Med. 2011, 45, 849–858. [Google Scholar] [CrossRef]
- Kriemler, S.; Meyer, U.; Martin, E.; Van Sluijs, E.M.F.; Andersen, L.B.; Martin, B.W. Effect of school-based interventions on physical activity and fitness in children and adolescents: A review of reviews and systematic update. Br. J. Sports Med. 2011, 45, 923–930. [Google Scholar] [CrossRef]
- Dobbins, M.; Husson, H.; Decorby, K.; Rl, L. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18 (review). Cochrane Database Syst. Rev. 2009, 18, CD007651. [Google Scholar] [CrossRef]
- Wassenaar, T.M.; Wheatley, C.M.; Beale, N.; Nichols, T.; Salvan, P.; Meaney, A.; Atherton, K.; Diaz-Ordaz, K.; Dawes, H.; Johansen-Berg, H. The effect of a one-year vigorous physical activity intervention on fitness, cognitive performance and mental health in young adolescents: The Fit to Study cluster randomised controlled trial. Int. J. Behav. Nutr. Phys. 2021, 18, 47. [Google Scholar] [CrossRef]
- Kemper, H.C.; Twisk, J.W.; Koppes, L.L.; Mechelen, W.V.; Post, G.B. A 15-year physical activity pattern is positively related to aerobic fitness in young males and females (13–27 years). Eur. J. Appl. Physiol. 2001, 84, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; McNaughton, L.R.; Wilkinson, M. Is there na optimal training intensity for enhancing the maximal oxygen uptake of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006, 36, 117. [Google Scholar] [CrossRef] [PubMed]
- Greca, J.P.A.; Silva, D.A.S. Sedentary behavior during school recess in southern Brazil. Percept. Mot. Ski. 2017, 124, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.J.; Belanger, K.; Poitras, V.; Janssen, I.; Tomkinson, G.R.; Tremblay, M.S. Systematic review of the relationship between 20 m shuttle run performance and health indicators among children and youth. J. Sci. Med. Sport 2018, 21, 383–397. [Google Scholar] [CrossRef]
- Kohl, H.W.; Fulton, J.E.; Caspersen, C.J. Assessment of physical activity among children and adolescents. Prev. Med. 2000, 31, S54–S76. [Google Scholar] [CrossRef]
- Eslinger, D.W.; Tremblay, M.S. Physical activity and inactivity profiling: The next generation. Can. J. Public Health 2007, 98 (Suppl. S2), S195–S207. [Google Scholar]
Less Active (n = 134) | Active (n = 82) | p-Value | d | |
Mean ± SD | Mean ± SD | |||
Male | ||||
Age (years) | 13.5 ± 1.3 | 13.6 ± 1.2 | 0.58 | 0.08 |
Body Mass (kg) | 54.8 ± 15.0 | 55.4 ± 11.5 | 0.77 | 0.04 |
Height (m) | 1.63 ± 0.02 | 1.64 ± 0.01 | 0.45 | 0.10 |
BMI (kg/m2) | 20.5 ± 4.0 | 20.6 ± 3.4 | 0.89 | 0.02 |
Fat Percentage (%) | 18.2 ± 7.7 | 16.7 ± 6.9 | 0.15 | 0.20 |
Predicted Adult Height (m) | 179.4 ± 5.5 | 178.9 ± 6.4 | 0.63 | 0.08 |
% EAP (%) | 90.9 ± 5.3 | 91.3 ± 4.6 | 0.63 | 0.07 |
Z score_EAP | 0.6 ± 0.7 | 0.8 ± 0.6 | 0.19 | 0.18 |
Distance covered (m) | 1022.8 ± 388.2 | 1247.8 ± 405.3 | <0.001 * | 0.58 |
VO2max (mL.Kg−1.min−1) | 46.7 ± 5.0 | 49.5 ± 4.8 | <0.001 * | 0.56 |
Less Active (n = 148) | Active (n = 48) | p-Value | d | |
Mean ± SD | Mean ± SD | |||
Female | ||||
Age (years) | 13.5 ± 1.2 | 13.2 ± 1.3 | 0.14 | 0.25 |
Body Mass (kg) | 52.2 ± 11.7 | 52.3 ± 11.3 | 0.97 | 0.01 |
Height (m) | 1.58 ± 0.01 | 1.57 ± 0.01 | 0.25 | 0.21 |
BMI (kg/m2) | 20.6 ± 3.6 | 21.1 ± 3.8 | 0.48 | 0.12 |
Fat Percentage (%) | 22.9 ± 6.1 | 23.0 ± 6.0 | 0.92 | 0.02 |
Predicted Adult Height (m) | 164.3 ± 4.0 | 163.7 ± 5.3 | 0.46 | 0.16 |
% EAP (%) | 96.5 ± 3.0 | 95.7 ± 3.7 | 0.20 | 0.24 |
Z score_EAP | −0.1 ± 1.0 | 0.1 ± 0.9 | 0.32 | 0.17 |
Distance covered (m) | 720.4 ± 266.8 | 794.1 ± 258.8 | 0.11 | 0.28 |
VO2max (mL.Kg−1.min−1) | 42.4 ± 4.4 | 44.0 ± 4.2 | 0.04 * | 0.36 |
Variable | Group | Mean | Group Effect | Measure Effect | Group * Measure Interaction | |||
---|---|---|---|---|---|---|---|---|
Baseline | 12 Months | 24 Months | 36 Months | |||||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||||
Male | F1.78 = 11.383 p = 0.001 * | F3.234 = 3.878 p = 0.01 * | F3.234 = 21.250 p < 0.001 * | |||||
Distance (m) | Active (n = 34) | 1143.2 ± 0.0 | 1311.4 ± 211.4 | 1351.8 ± 306.1 | 1503.3 ± 312.1 | |||
Less active (n = 48) | 1143.2 ± 0.0 | 1156.5 ± 210.6 | 1163.7 ± 305.1 | 1344.7 ± 311.0 | ||||
VO2max (mL.Kg−1.min−1) | Active (n = 34) | 48.6 ± 0.0 | 49.9 ± 2.7 | 49.4 ± 4.1 | 50.0 ± 4.1 | F1.78 = 12.811 p = 0.001 * | F3.234 = 10.049 p < 0.001 * | F3.234 = 3.863 p = 0.01 * |
Less active (n = 48) | 48.6 ± 0.0 | 47.8 ± 2.7 | 46.7 ± 4.0 | 47.8 ± 4.0 | ||||
Female | F1.41 = 4.546 p = 0.04 * | F3.234 = 2.795 p = 0.04 * | F3.234 = 21.250 p < 0.001 * | |||||
Distance (m) | Active (n = 12) | 839.5 ± 0.0 | 849.1 ± 184.6 | 866.8 ± 200.7 | 933.4 ± 253.7 | |||
Less active (n = 33) | 839.5 ± 0.0 | 819.7 ± 175.1 | 711.8 ± 190.4 | 720.6 ± 240.7 | ||||
VO2max (mL.Kg−1.min−1) | Active (n = 12) | 44.5 ± 0.0 | 44.0 ± 2.6 | 42.7 ± 3.0 | 42.1 ± 3.7 | F1.41 = 5.690 p = 0.0 * | F3.234 = 4.400 p = 0.006 * | F3.234 = 3.549 p = 0.02 * |
Less active (n = 33) | 44.5 ± 0.0 | 43.4 ± 2.4 | 40.1 ± 2.8 | 39.0 ± 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.A.S.; de Andrade Gonçalves, E.C.; Coelho, E.F.; Cerqueira, M.S.; Werneck, F.Z. Cardiorespiratory Fitness and Physical Activity among Children and Adolescents: 3-Year Longitudinal Study in Brazil. Int. J. Environ. Res. Public Health 2022, 19, 11431. https://doi.org/10.3390/ijerph191811431
Silva DAS, de Andrade Gonçalves EC, Coelho EF, Cerqueira MS, Werneck FZ. Cardiorespiratory Fitness and Physical Activity among Children and Adolescents: 3-Year Longitudinal Study in Brazil. International Journal of Environmental Research and Public Health. 2022; 19(18):11431. https://doi.org/10.3390/ijerph191811431
Chicago/Turabian StyleSilva, Diego Augusto Santos, Eliane Cristina de Andrade Gonçalves, Emerson Filipino Coelho, Matheus Santos Cerqueira, and Francisco Zacaron Werneck. 2022. "Cardiorespiratory Fitness and Physical Activity among Children and Adolescents: 3-Year Longitudinal Study in Brazil" International Journal of Environmental Research and Public Health 19, no. 18: 11431. https://doi.org/10.3390/ijerph191811431
APA StyleSilva, D. A. S., de Andrade Gonçalves, E. C., Coelho, E. F., Cerqueira, M. S., & Werneck, F. Z. (2022). Cardiorespiratory Fitness and Physical Activity among Children and Adolescents: 3-Year Longitudinal Study in Brazil. International Journal of Environmental Research and Public Health, 19(18), 11431. https://doi.org/10.3390/ijerph191811431