Concurrent and Predictive Validity of an Exercise-Specific Scale for the Perception of Velocity in the Back Squat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Procedures
2.3.1. Squat PV Scale
2.3.2. Familiarization Sessions
2.3.3. One Repetition Maximum
2.3.4. Perception Velocity Evaluation Sessions
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Numerical Values (Max and Min Velocity Threshold)
4.2. Polynomial Regression Model
4.3. Verbal Anchors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Lubans, D.R.; Karunamuni, N.; Kennedy, S.; Plotnikoff, R. Factors associated with participation in resistance training: A systematic review. Br. J. Sports Med. 2017, 51, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Shailendra, P.; Baldock, K.L.; Li, L.S.K.; Bennie, J.A.; Boyle, T. Resistance Training and Mortality Risk: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2022, 63, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.A.; Benson, A.C.; Bird, S.R.; Fraser, S.F. Resistance training improves metabolic health in type 2 diabetes: A systematic review. Diabetes Res. Clin. Pract. 2009, 83, 157–175. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of Resistance Training: Progression and Exercise Prescription. Med. Sci. Sport. Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, A.; Varalda, C.; Piacentini, M. The Role of Velocity Based Training in the Strength Periodization for Modern Athletes. J. Funct. Morphol. Kinesiol. 2018, 3, 55. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Larsen, S.; Kristiansen, E.; van den Tillaar, R. Effects of subjective and objective autoregulation methods for intensity and volume on enhancing maximal strength during resistance-training interventions: A systematic review. PeerJ 2021, 9, e10663. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of Velocity-Based Training on Strength and Power in Elite Athletes—A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Med. Sci. Sport. Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Yañez-García, J.M.; Mora-Custodio, R.; Rodríguez-Rosell, D. Velocity Loss as a Variable for Monitoring Resistance Exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Villanueva, A.; Pino-Ortega, J.; Rico-González, M. Validity and reliability of linear position transducers and linear velocity transducers: A systematic review. Sport. Biomech. 2021, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Morrison, M.; García-Ramos, A.; Johnston, R.; James, L.; Cole, M.H. The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review. Sports Med. 2021, 51, 443–502. [Google Scholar] [CrossRef] [PubMed]
- Bautista, I.J.; Chirosa, I.J.; Chirosa, L.J.; Martín, I.; González, A.; Robertson, R.J. Development and validity of a scale of perception of velocity in resistance exercise. J. Sports Sci. Med. 2014, 13, 542–549. [Google Scholar]
- Bautista, I.J.; Chirosa, I.J.; Robinson, J.E.; Chirosa, L.J.; Martínez, I. Concurrent Validity of a Velocity Perception Scale to Monitor Back Squat Exercise Intensity in Young Skiers. J. Strength Cond. Res. 2016, 30, 421–429. [Google Scholar] [CrossRef]
- Romagnoli, R.; Piacentini, M.F. Perception of Velocity during Free-Weight Exercises: Difference between Back Squat and Bench Press. J. Funct. Morphol. Kinesiol. 2022, 7, 34. [Google Scholar] [CrossRef]
- Caven, E.J.G.; Bryan, T.J.E.; Dingley, A.F.; Drury, B.; Garcia-Ramos, A.; Perez-Castilla, A.; Arede, J.; Fernandes, J.F.T. Group versus Individualised Minimum Velocity Thresholds in the Prediction of Maximal Strength in Trained Female Athletes. Int. J. Environ. Res. Public Health 2020, 17, 7811. [Google Scholar] [CrossRef]
- Loturco, I.; Suchomel, T.; Kobal, R.; Arruda, A.F.S.; Guerriero, A.; Pereira, L.A.; Pai, C.N. Force-Velocity Relationship in Three Different Variations of Prone Row Exercises. J. Strength Cond. Res. 2021, 35, 300–309. [Google Scholar] [CrossRef]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef]
- Loturco, I.; Kobal, R.; Moraes, J.E.; Kitamura, K.; Cal Abad, C.C.; Pereira, L.A.; Nakamura, F.Y. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach. J. Strength Cond. Res. 2017, 31, 1127–1131. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; García-Ramos, A.; Padial, P.; Morales-Artacho, A.J.; Feriche, B. Load-Velocity Relationship in Variations of the Half-Squat Exercise: Influence of Execution Technique. J. Strength Cond. Res. 2020, 34, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.W.; Rogerson, D.; Ruddock, A.; Banyard, H.G.; Barnes, A. Pooled Versus Individualized Load–Velocity Profiling in the Free-Weight Back Squat and Power Clean. Int. J. Sports Physiol. Perform. 2021, 16, 825–833. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: London, UK, 1988; ISBN 9781134742707. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Wilson, K.; Till, K.; Banyard, H.; Dyson, J.; Phibbs, P.; Read, D.; Jones, B. Show Me, Tell Me, Encourage Me: The Effect of Different Forms of Feedback on Resistance Training Performance. J. Strength Cond. Res. 2020, 34, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.J.S.; Wilson, K.M.; Till, K.; Read, D.B.; Darrall-Jones, J.; Roe, G.A.B.; Phibbs, P.J.; Jones, B. Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. J. Strength Cond. Res. 2019, 33, 2420–2425. [Google Scholar] [CrossRef]
- Thompson, S.W.; Olusoga, P.; Rogerson, D.; Ruddock, A.; Barnes, A. “Is it a slow day or a go day?”: The perceptions and applications of velocity-based training within elite strength and conditioning. Int. J. Sports Sci. Coach. 2022, 174795412210996. [Google Scholar] [CrossRef]
- Hirsch, S.; Frost, D. Considerations for Velocity-Based Training: The Instruction to Move “As Fast As Possible” Is Less Effective Than a Target Velocity. J. Strength Cond. Res. 2019, 35, S89–S94. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef]
- Sindiani, M.; Lazarus, A.; Iacono, A.D.; Halperin, I. Perception of changes in bar velocity in resistance training: Accuracy levels within and between exercises. Physiol. Behav. 2020, 224, 113025. [Google Scholar] [CrossRef]
- García-Ramos, A.; Suzovic, D.; Pérez-Castilla, A. The load-velocity profiles of three upper-body pushing exercises in men and women. Sport. Biomech. 2021, 20, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Fahs, C.A.; Blumkaitis, J.C.; Rossow, L.M. Factors Related to Average Concentric Velocity of Four Barbell Exercises at Various Loads. J. Strength Cond. Res. 2019, 33, 597–605. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Differences in the Load–Velocity Profile Between 4 Bench-Press Variants. Int. J. Sports Physiol. Perform. 2018, 13, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Abbiss, C.R.; Peiffer, J.J.; Meeusen, R.; Skorski, S. Role of Ratings of Perceived Exertion during Self-Paced Exercise: What are We Actually Measuring? Sport. Med. 2015, 45, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Boullosa, D.; McGuigan, M.; Fusco, A.; Cortis, C.; Arney, B.E.; Orton, B.; Dodge, C.; Jaime, S.; Radtke, K.; et al. 25 Years of Session Rating of Perceived Exertion: Historical Perspective and Development. Int. J. Sports Physiol. Perform. 2021, 16, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health 1990, 16, 55–58. [Google Scholar] [CrossRef] [PubMed]
Age (Years) | Body Mass (kg) | Height (cm) | 1-RM (kg) | 1-RM/BW | |
---|---|---|---|---|---|
Men (n = 14) | 28.7 ± 7.5 | 80.5 ± 14.4 | 178 ± 4.6 | 136.9 ± 26.3 | 1.71 ± 0.27 |
Women (n = 17) | 23 ± 2.4 | 56.9 ± 5.4 | 163.9 ± 4.6 | 91.1 ± 13 | 1.63 ± 0.31 |
Blinded Load Test | |
---|---|
Protocol | |
Load | MPV (m·s−1) |
Light | ≥1 |
Medium | 0.6–0.8 |
Heavy | ≤0.4 |
Day | Light Load | Medium Load | Heavy Load | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vp | Vr | Vp | Vr | Vp | Vr | |||||||
Mean (SD) | CI (95%) | Mean (SD) | CI (95%) | Mean (SD) | CI (95%) | Mean (SD) | CI (95%) | Mean (SD) | CI (95%) | Mean (SD) | CI (95%) | |
1 | 1.05 (0.09) | 1.03 1.08 | 0.99 (0.08) | 0.97 1.00 | 0.65 (0.10) | 0.62 0.68 | 0.59 (0.07) | 0.58 0.61 | 0.39 (0.09) | 0.37 0.41 | 0.37 (0.07) | 0.35 0.39 |
2 | 1.05 (0.07) | 1.03 1.07 | 0.98 (0.08) | 0.96 1.00 | 0.66 (0.08) | 0.64 0.69 | 0.59 (0.07) | 0.57 0.61 | 0.38 (0.09) | 0.36 0.40 | 0.37 (0.07) | 0.35 0.39 |
3 | 1.05 (0.07) | 1.03 1.07 | 0.98 (0.07) | 0.97 1.00 | 0.64 (0.09) | 0.62 0.66 | 0.58 (0.07) | 0.57 0.60 | 0.36 (0.08) | 0.34 0.38 | 0.36 (0.08) | 0.34 0.37 |
Day | Light Load | Medium Load | Heavy Load | All Loads | ||||
---|---|---|---|---|---|---|---|---|
r | R2 | r | R2 | r | R2 | r | R2 | |
1 | 0.80 * | 0.64 | 0.81 * | 0.65 | 0.83 * | 0.69 | 0.98 | 0.96 |
2 | 0.73 * | 0.53 | 0.80 * | 0.65 | 0.79 * | 0.63 | 0.97 | 0.95 |
3 | 0.82 * | 0.68 | 0.74 * | 0.54 | 0.82 * | 0.68 | 0.98 | 0.97 |
Loads | ICC (95%IC) | SEM |
---|---|---|
Light | 0.85 (0.77–0.90) | 0.03 |
Medium | 0.90 (0.85–0.94) | 0.03 |
Heavy | 0.86 (0.79–0.91) | 0.03 |
All | 0.99 (0.99–0.99) | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romagnoli, R.; Civitella, S.; Minganti, C.; Piacentini, M.F. Concurrent and Predictive Validity of an Exercise-Specific Scale for the Perception of Velocity in the Back Squat. Int. J. Environ. Res. Public Health 2022, 19, 11440. https://doi.org/10.3390/ijerph191811440
Romagnoli R, Civitella S, Minganti C, Piacentini MF. Concurrent and Predictive Validity of an Exercise-Specific Scale for the Perception of Velocity in the Back Squat. International Journal of Environmental Research and Public Health. 2022; 19(18):11440. https://doi.org/10.3390/ijerph191811440
Chicago/Turabian StyleRomagnoli, Ruggero, Sergio Civitella, Carlo Minganti, and Maria Francesca Piacentini. 2022. "Concurrent and Predictive Validity of an Exercise-Specific Scale for the Perception of Velocity in the Back Squat" International Journal of Environmental Research and Public Health 19, no. 18: 11440. https://doi.org/10.3390/ijerph191811440
APA StyleRomagnoli, R., Civitella, S., Minganti, C., & Piacentini, M. F. (2022). Concurrent and Predictive Validity of an Exercise-Specific Scale for the Perception of Velocity in the Back Squat. International Journal of Environmental Research and Public Health, 19(18), 11440. https://doi.org/10.3390/ijerph191811440