The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Selection Criteria
- the participants were adults over 18 years of age without the disease (e.g., the presence of cardiovascular diseases, diabetes mellitus, arterial hypertension, or any other diseases that required pharmacological treatment);
- the intervention used in the study was CT with LCHF;
- the primary outcomes are lean mass (body composition) and VO2max (aerobic performance);
- the secondary outcome are body mass, body fat percentage, and time (or distance) to complete the aerobic tests (100 km total time, 10 km total time, Yo-Yo total distance, total fatigue time and, total performance time);
- the design of the study was a randomized (or not randomized) controlled trial;
- the intervention duration was more than two weeks.
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Studies
3.2.1. Participant Characteristics
3.2.2. Intervention Characteristics
3.3. Quality Assessment
3.4. Study Outcomes
3.5. Meta-Analysis
3.5.1. Lean Mass
3.5.2. Body Fat Percentage
3.5.3. Body Mass
3.5.4. VO2max
3.5.5. Time (or Distance) to Complete the Aerobic Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef]
- Rothschild, J.A.; Kilding, A.E.; Plews, D.J. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020, 12, 3473. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011, 29, S91–S99. [Google Scholar] [CrossRef]
- Devrim-Lanpir, A.; Hill, L.; Knechtle, B. Efficacy of Popular Diets Applied by Endurance Athletes on Sports Performance: Beneficial or Detrimental? A Narrative Review. Nutrients 2021, 13, 491. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Bovim, I.M.; Whitfield, J. Contemporary Nutrition Interventions to Optimize Performance in Middle-Distance Runners. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jager, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Holub, B.; Mutch, D.M.; Pierce, G.N.; Rodriguez-Leyva, D.; Aliani, M.; Innis, S.; Yan, W.; Lamarche, B.; Couture, P.; Ma, D.W.L. Proceedings from the 2013 Canadian Nutrition Society Conference on Advances in Dietary Fats and Nutrition. Appl. Physiol. Nutr. Metab. 2014, 39, 754–762. [Google Scholar] [CrossRef]
- Heaney, S.; O’Connor, H.; Michael, S.; Gifford, J.; Naughton, G. Nutrition Knowledge in Athletes: A Systematic Review. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 248–261. [Google Scholar] [CrossRef]
- Kreider, R.B.; Wilborn, C.D.; Taylor, L.; Campbell, B.; Almada, A.L.; Collins, R.; Cooke, M.; Earnest, C.P.; Greenwood, M.; Kalman, D.S.; et al. ISSN exercise & sport nutrition review: Research & recommendations. J. Int. Soc. Sports Nutr. 2010, 7, 7. [Google Scholar] [CrossRef]
- Perez-Schindler, J.; Hamilton, D.L.; Moore, D.R.; Baar, K.; Philp, A. Nutritional strategies to support concurrent training. Eur. J. Sport Sci. 2015, 15, 41–52. [Google Scholar] [CrossRef]
- Ogasawara, R.; Sato, K.; Matsutani, K.; Nakazato, K.; Fujita, S. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1155–E1162. [Google Scholar] [CrossRef]
- Fyfe, J.J.; Bishop, D.J.; Zacharewicz, E.; Russell, A.P.; Stepto, N.K. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1297–R1311. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
- Bestard, M.A.; Rothschild, J.A.; Crocker, G.H. Effect of low- and high-carbohydrate diets on swimming economy: A crossover study. J. Int. Soc. Sports Nutr. 2020, 17, 64. [Google Scholar] [CrossRef]
- Hawley, J.A. Fat adaptation science: Low-carbohydrate, high- fat diets to alter fuel utilization and promote training adaptation. In Sports Nutrition: More Than Just Calories-Triggers for Adaptation; Karger Publishers: Basel, Switzerland, 2011; Volume 69, pp. 59–78, discussion 71–57. [Google Scholar] [CrossRef]
- Burke, L.M. Ketogenic low-CHO, high-fat diet: The future of elite endurance sport? J. Physiol. 2021, 599, 819–843. [Google Scholar] [CrossRef]
- Terink, R.; Witkamp, R.F.; Hopman, M.T.E.; Siebelink, E.; Savelkoul, H.F.J.; Mensink, M. A 2 Week Cross-over Intervention with a Low Carbohydrate, High Fat Diet Compared to a High Carbohydrate Diet Attenuates Exercise-Induced Cortisol Response, but Not the Reduction of Exercise Capacity, in Recreational Athletes. Nutrients 2021, 13, 157. [Google Scholar] [CrossRef]
- Gejl, K.D.; Thams, L.B.; Hansen, M.; Rokkedal-Lausch, T.; Plomgaard, P.; Nybo, L.; Larsen, F.J.; Cardinale, D.A.; Jensen, K.; Holmberg, H.C.; et al. No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes. Med. Sci. Sports Exerc. 2017, 49, 2486–2497. [Google Scholar] [CrossRef]
- Hearris, M.A.; Hammond, K.M.; Fell, J.M.; Morton, J.P. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients 2018, 10, 298. [Google Scholar] [CrossRef]
- Howard, E.E.; Margolis, L.M. Intramuscular Mechanisms Mediating Adaptation to Low-Carbohydrate, High-Fat Diets during Exercise Training. Nutrients 2020, 12, 2496. [Google Scholar] [CrossRef]
- McSwiney, F.T.; Doyle, L.; Plews, D.J.; Zinn, C. Impact Of Ketogenic Diet On Athletes: Current Insights. Open Access J. Sports Med. 2019, 10, 171–183. [Google Scholar] [CrossRef]
- Christensen, R.A.G.; High, S.; Wharton, S.; Kamran, E.; Dehlehhosseinzadeh, M.; Fung, M.; Kuk, J.L. Sequential diets and weight loss: Including a low-carbohydrate high-fat diet with and without time-restricted feeding. Nutrition 2021, 91–92, 111393. [Google Scholar] [CrossRef]
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International society of sports nutrition position stand: Diets and body composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef]
- Phinney, S.D. Ketogenic diets and physical performance. Nutr. Metab. 2004, 1, 2. [Google Scholar] [CrossRef]
- Lambert, E.V.; Hawley, J.A.; Goedecke, J.; Noakes, T.D.; Dennis, S.C. Nutritional strategies for promoting fat utilization and delaying the onset of fatigue during prolonged exercise. J. Sports Sci. 1997, 15, 315–324. [Google Scholar] [CrossRef]
- McSwiney, F.T.; Wardrop, B.; Hyde, P.N.; Lafountain, R.A.; Volek, J.S.; Doyle, L. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metab.-Clin. Exp. 2018, 81, 25–34. [Google Scholar] [CrossRef]
- Zajac, A.; Poprzecki, S.; Maszczyk, A.; Czuba, M.; Michalczyk, M.; Zydek, G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients 2014, 6, 2493–2508. [Google Scholar] [CrossRef]
- Bartlett, J.; Hawley, J.; Morton, J. Carbohydrate availability and exercise training adaptation: Too much of a good thing? Eur. J. Sport Sci. 2014, 15, 3–12. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Hoffman, M.D.; Stellingwerff, T. Considerations for ultra-endurance activities: Part 1-nutrition. Res. Sports Med. 2019, 27, 166–181. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of World Class Cycling. J. Sci. Med. Sport 2000, 3, 414–433. [Google Scholar] [CrossRef]
- Burke, L.M.; Sharma, A.P.; Heikura, I.A.; Forbes, S.F.; Holloway, M.; McKay, A.K.A.; Bone, J.L.; Leckey, J.J.; Welvaert, M.; Ross, M.L. Crisis of confidence averted: Impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS ONE 2020, 15, e0234027. [Google Scholar] [CrossRef]
- Burke, L.M.; Ross, M.L.; Garvican-Lewis, L.A.; Welvaert, M.; Heikura, I.A.; Forbes, S.G.; Mirtschin, J.G.; Cato, L.E.; Strobel, N.; Sharma, A.P.; et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 2017, 595, 2785–2807. [Google Scholar] [CrossRef]
- Zinn, C.; Wood, M.; Williden, M.; Chatterton, S.; Maunder, E. Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. J. Int. Soc. Sports Nutr. 2017, 14, 22. [Google Scholar] [CrossRef]
- Cao, J.; Lei, S.; Wang, X.; Cheng, S. The Effect of a Ketogenic Low-Carbohydrate, High-Fat Diet on Aerobic Capacity and Exercise Performance in Endurance Athletes: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2896. [Google Scholar] [CrossRef]
- Gejl, K.D.; Nybo, L. Performance effects of periodized carbohydrate restriction in endurance trained athletes-a systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2021, 18, 37. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Cheung, M. Meta-Analysis: A Structural Equation Modeling Approach; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, J. Influences of Ketogenic Diet on Body Fat Percentage, Respiratory Exchange Rate, and Total Cholesterol in Athletes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Heal. 2021, 18, 2912. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Asbaghi, O.; Tinsley, G.M.; Kooti, W.; Abbasnezhad, A.; Afrisham, R.; Wong, A. Effects of resistance training combined with a ketogenic diet on body composition: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 5717–5732. [Google Scholar] [CrossRef]
- Paoli, A.A.; Mancin, L.; Caprio, M.; Monti, E.; Narici, M.V.; Cenci, L.; Piccini, F.; Pincella, M.; Grigoletto, D.; Marcolin, G. Effects of 30 days of ketogenic diet on body composition, muscle strength, muscle area, metabolism, and performance in semi-professional soccer players. J. Int. Soc. Sports Nutr. 2021, 18, 62. [Google Scholar] [CrossRef]
- Dostal, T.; Plews, D.J.; Hofmann, P.; Laursen, P.B.; Cipryan, L. Effects of a 12-Week Very-Low Carbohydrate High-Fat Diet on Maximal Aerobic Capacity, High-Intensity Intermittent Exercise, and Cardiac Autonomic Regulation: Non-randomized Parallel-Group Study. Front. Physiol. 2019, 10, 912. [Google Scholar] [CrossRef]
- Gregory, R. A Low-Carbohydrate Ketogenic Diet Combined with 6-Weeks of Crossfit Training Improves Body Composition and Performance. Int. J. Sports Exerc. Med. 2017, 3, 54. [Google Scholar] [CrossRef]
- Meirelles, C.M.; Gomes, P.S.C. Effects of Short-Term Carbohydrate Restrictive and Conventional Hypoenergetic Diets and Resistance Training on Strength Gains and Muscle Thickness. J. Sports Sci. Med. 2016, 15, 578–584. [Google Scholar]
- Kysel, P.; Haluzíková, D.; Doležalová, R.P.; Laňková, I.; Lacinová, Z.; Kasperová, B.J.; Trnovská, J.; Hrádková, V.; Mráz, M.; Vilikus, Z.; et al. The Influence of Cyclical Ketogenic Reduction Diet vs. Nutritionally Balanced Reduction Diet on Body Composition, Strength, and Endurance Performance in Healthy Young Males: A Randomized Controlled Trial. Nutrients 2020, 12, 2832. [Google Scholar] [CrossRef]
- McSwiney, F.T.; Doyle, L. Low-Carbohydrate Ketogenic Diets in Male Endurance Athletes Demonstrate Different Micronutrient Contents and Changes in Corpuscular Haemoglobin over 12 Weeks. Sports 2019, 7, 201. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Pacelli, F.Q.; Marcolin, G.; Bianco, A.; Paoli, A. Twelve Months of Time-restricted Eating and Resistance Training Improves Inflammatory Markers and Cardiometabolic Risk Factors. Med. Sci. Sports Exerc. 2021, 53, 2577–2585. [Google Scholar] [CrossRef]
- Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 2019, 4, e128308. [Google Scholar] [CrossRef] [Green Version]
- Paoli, A.; Rubini, A.; Volek, J.S.; Grimaldi, K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013, 67, 789–796. [Google Scholar] [CrossRef]
- Reidy, P.T.; Rasmussen, B.B. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef]
- Hall, K.D.; Chen, K.Y.; Guo, J.; Lam, Y.Y.; Leibel, R.L.; Mayer, L.E.; Reitman, M.L.; Rosenbaum, M.; Smith, S.R.; Walsh, B.T.; et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 2016, 104, 324–333. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Bavi, H.; Baker, J.S.; Moro, T.; Mancin, L.; Paoli, A. Ketogenic diets, physical activity, and body composition: A review. Br. J. Nutr. 2021, 127, 1898–1920. [Google Scholar] [CrossRef]
- Chang, C.K.; Borer, K.; Lin, P.J. Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance? J. Hum. Kinet. 2017, 56, 81–92. [Google Scholar] [CrossRef]
- Volek, J.S.; Freidenreich, D.J.; Saenz, C.; Kunces, L.J.; Creighton, B.C.; Bartley, J.M.; Davitt, P.M.; Munoz, C.X.; Anderson, J.M.; Maresh, C.M.; et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism 2016, 65, 100–110. [Google Scholar] [CrossRef]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Maunder, E.; Dulson, D.K. Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners. Med. Sci. Sports Exerc. 2019, 51, 2135–2146. [Google Scholar] [CrossRef]
Study | Participants | Intervention Group-n | Duration Group-n | Intervention | Duration | Macronutrient Ratio in LCHFs | Types of Non-LCHF | Macronutrient Ratio in Non-LCHFs | Ad Libitum (Yes/No) | Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Meirelles et al., (2019) [49] | at least three months of experience in RT | 9 | 12 | RT/AT | 8 week | <30 g CHO/d | CONV | CHO: 55% PRT: 15% FAT: 30% | Yes | body mass →; body fat percentage →; |
Paoli et al., (2021) [46] | soccer players | 8 | 8 | RT/AT | 30 day | CHO: 22 ± 5 g PRT: 130 ± 25 g FAT: 132 ± 27 g Total: 1984 ± 430 (Kcal) | WD | CHO: 220 ± 56 g PRT: 129 ± 28 g FAT: 38 ± 10 g Total: 1752 ± 320 (Kcal) | Yes | body weight →; lean soft tissue →; Yo-Yo Total distance →; |
Kysel et al., (2020) [50] | experience with RT and AT | 13 | 12 | RT/AT | 30 day | CHO: 30 g PRT: 1.6 g/kg ≈130 g | RD | CHO: 55% PRT: 15% | Yes | Weight →; muscles →; body fat percentage →; VO2max →. |
Burke et al., (2020) [31] | race walkers | 10 | 8 | RT/AT | 8 week | CHO: 35 ± 3 g PRT: 144 ± 18 g FAT: 326 ± 34 g | HCHO | CHO: 534 ± 77 g PRT: 127 ± 23 g FAT: 69 ± 16 g | Yes | VO2peak →. |
McSwiney et al., (2018) [26] | well-trained athletes | 9 | 11 | ET/ST/HIIT | 12 week | CHO: 41.1 ± 13.3 g PRT: 130.7 ± 35.8 g FAT: 259.3 ± 83.4 g | HCHO | CHO: 400.3 ± 102.7 g PRT: 55.2 ± 10.7 g FAT: 55.2 ± 10.7 g | NO | body mass ↓; body fat percentage ↓; VO2max →; 100 km total time →. |
Dostal et al., (2019) [47] | well-trained athletes | 12 | 12 | HIIT/RT | 12 week | CHO: <50 g | HD | / | NO | body mass (Not counted); skeletal muscle mass (Not counted); body fat percentage (Not counted); total fatigue Time →; VO2max →. |
Burke et al., (2017) [32] | race walkers | 10 | 9 | RT/AT | 3 week | CHO: <50 g PRT: 15–20% FAT: 75–80% | HCHO | CHO: 60–65% PRT: 15–20% FAT: 20% | Yes | VO2peak →; 10 km Total Time ↓. |
Gregory et al., (2017) [48] | male and female of all levels of fitness | 12 | 15 | RT/WOD | 6 week | CHO: 44.42 ± 16.46 g PRT: 91.52 ± 17.34 g FAT: 114.54 ± 25.23 g | WD | CHO: 187.19 ± 68.01 g PRT: 80.45 ± 18.61 g FAT: 73.47 ± 18.86 g | Yes | Weight ↓; Lean mass →; body fat percentage ↓; total Performance time →. |
Study | Eligibility Criteria | Random Allocation | Concealed Allocation | Similarity Baseline | Subject Blinding | Therapist Blinding | Assessor Blinding | >85% Retention | Intention-to-Treat | Between-Group Comparisons | Point and Variability Measures | Total Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Meirelles et al., (2019) [49] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 6 |
Paoli et al., (2021) [46] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 6 |
Kysel et al., (2020) [50] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 6 |
Burke et al., (2020) [31] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 |
McSwiney et al., (2018) [26] | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Dostal et al., (2019) [47] | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Burke et al., (2017) [32] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 4 |
Gregory et al., (2017) [48] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 6 |
Outcomes | Overall and Subgroup Analysis | No. of Studies | Treatment Effect SMD (95% CI) | p Value | Test of Heterogeneity | ||
---|---|---|---|---|---|---|---|
χ2 | p Value | I2 (%) | |||||
Lean Mass | Overall | 5 | −0.08(−0.44, 0.3) | 0.69 | 0.36 | 0.99 | 0 |
Recreational Trained Participants | 3 | −0.11(−0.56, 0.34) | 0.64 | 0.29 | 0.87 | 0 | |
Professionally Trained Participants | 2 | −0.01(−0.66, 0.65) | 0.99 | 0.01 | 0.91 | 0 | |
≤6 | 3 | −0.13(−0.6, 0.35) | 0.59 | 0.22 | 0.9 | 0 | |
>6 | 2 | 0.01(−0.58, 0.61) | 0.98 | 0 | 0.96 | 0 | |
Percentage Body Fat | Overall | 5 | −0.29(−0.66, 0.08) | 0.13 | 4.37 | 0.36 | 8.4 |
Recreational Trained Participants | 4 | −0.17(−0.57, 0.23) | 0.41 | 2.93 | 0.5 | 0 | |
Professionally Trained Participants | 1 | −0.9(−1.83, 0.03) | 0.06 | - | - | - | |
≤6 | 1 | −0.33(−1.1, 0.44) | 0.4 | - | - | - | |
>6 | 4 | −0.27(−0.7, 0.15) | 0.2 | 4.35 | 0.23 | 31.1 | |
Body Mass | Overall | 7 | −0.21(−0.53, 0.11) | 0.2 | 0.57 | 0.99 | 0 |
Recreational Trained Participants | 3 | −0.17(−0.62, 0.28) | 0.46 | 0.26 | 0.88 | 0 | |
Professionally Trained Participants | 4 | −0.25(−0.72, 0.21) | 0.28 | 0.25 | 0.97 | 0 | |
≤6 | 3 | −0.21(−0.71, 0.29) | 0.41 | 0.05 | 0.97 | 0 | |
>6 | 4 | −0.21(−0.63, 0.21) | 0.33 | 0.52 | 0.92 | 0 | |
Time (or Distance) to Complete the Aerobic Tests | Overall | 5 | −0.02(−0.41, 0.37) | 0.1 | 4.34 | 0.36 | 7.8 |
Recreational Trained Participants | 2 | 0.13(−0.43, 0.68) | 0.66 | 0.08 | 0.78 | 0 | |
Professionally Trained Participants | 3 | −0.16(−0.7, 0.38) | 0.57 | 3.74 | 0.15 | 46.5 | |
≤6 | 3 | −0.16(−0.67, 0.35) | 0.54 | 3.43 | 0.18 | 41.7 | |
>6 | 2 | 0.17(−0.42, 0.77) | 0.57 | 0.23 | 0.63 | 0 | |
VO2max | Overall | 5 | −0.01(−0.4, 0.37) | 0.95 | 0.96 | 0.92 | 0 |
Recreational Trained Participants | 3 | 0.09(−0.39, 0.57) | 0.7 | 0.4 | 0.52 | 0 | |
Professionally Trained Participants | 2 | −0.2(−0.83, 0.43) | 0.54 | 0.04 | 0.85 | 0 | |
≤6 | 1 | −0.26(−1.17, 0.64) | 0.57 | - | - | - | |
>6 | 4 | 0.04(−0.38, 0.46) | 0.85 | 0.6 | 0.9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, K.; Wang, V.; Bao, D.; Zhou, J. The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 11542. https://doi.org/10.3390/ijerph191811542
Wang Y, Zhou K, Wang V, Bao D, Zhou J. The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(18):11542. https://doi.org/10.3390/ijerph191811542
Chicago/Turabian StyleWang, Yubo, Kaixiang Zhou, Vienna Wang, Dapeng Bao, and Junhong Zhou. 2022. "The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 18: 11542. https://doi.org/10.3390/ijerph191811542
APA StyleWang, Y., Zhou, K., Wang, V., Bao, D., & Zhou, J. (2022). The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 19(18), 11542. https://doi.org/10.3390/ijerph191811542