Sepsis among Neonates in a Ghanaian Tertiary Military Hospital: Culture Results and Turnaround Times
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.2.1. General Setting
2.2.2. Specific Setting
2.2.3. Bacteriological Procedures for Suspected Neonatal Sepsis
2.3. Study Population
2.4. Variables, Sources of Data, and Data Collection
2.5. Data Analysis
3. Results
3.1. Characteristics of Neonates with Suspected Sepsis
3.2. Turnaround Time and Admission Outcomes of Neonates with Suspected Sepsis
3.3. Characteristics of Neonates with Culture Confirmed Sepsis
3.4. Pathogens Isolated
3.5. Antimicrobial Susceptibility including MDR
4. Discussion
4.1. Key Findings
4.2. Strengths and Limitations
4.3. Implications and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawhney, N.; Pottathil, S.; Singh, V. Bacteriological Profile and Antibiotic Susceptibility Pattern of Neonatal Septicaemia in a Tertiary Care Hospital. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 977–984. [Google Scholar]
- Singh, M.; Deorari, A.K.; Khajuria, R.C.; Paul, V.K. Perinatal & Neonatal Mortality in a Hospital. Indian J. Med. Res. 1991, 94, 1–5. [Google Scholar] [PubMed]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal Sepsis. Lancet Lond. Engl. 2017, 390, 1770–1780. [Google Scholar] [CrossRef]
- Zaidi, A.K.; Huskins, W.C.; Thaver, D.; Bhutta, Z.A.; Abbas, Z.; Goldmann, D.A. Hospital-Acquired Neonatal Infections in Developing Countries. Lancet 2005, 365, 1175–1188. [Google Scholar] [CrossRef]
- Labi, A.-K.; Obeng-Nkrumah, N.; Bjerrum, S.; Enweronu-Laryea, C.; Newman, M.J. Neonatal Bloodstream Infections in a Ghanaian Tertiary Hospital: Are the Current Antibiotic Recommendations Adequate? BMC Infect. Dis. 2016, 16, 598. [Google Scholar] [CrossRef]
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global Incidence and Mortality of Neonatal Sepsis: A Systematic Review and Meta-Analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef]
- GBD 2017 Causes of Death Collaborators Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 2018, 392, 1736–1788. [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 2018, 392, 1789–1858. [CrossRef]
- UNICEF. Levels & Trends in Child Mortality; WHO, World Bank Group: Geneva, Switzerland, 2015; Available online: https://www.unicef.org/media/files/IGME_Report_Final2.pdf (accessed on 8 July 2022).
- WHO. Newborns: Reducing Mortality; WHO, World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality (accessed on 8 July 2022).
- Ranjeva, S.L.; Warf, B.C.; Schiff, S.J. Economic Burden of Neonatal Sepsis in Sub-Saharan Africa. BMJ Glob. Health 2018, 3, e000347. [Google Scholar] [CrossRef]
- Macharashvili, N.; Kourbatova, E.; Butsashvili, M.; Tsertsvadze, T.; McNutt, L.-A.; Leonard, M.K. Etiology of Neonatal Blood Stream Infections in Tbilisi, Republic of Georgia. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2009, 13, 499–505. [Google Scholar] [CrossRef]
- WHO. WHO Releases the 2019 AWaRe Classification Antibiotics; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/news/item/01-10-2019-who-releases-the-2019-aware-classification-antibiotics (accessed on 8 July 2022).
- Penno, E.C.; Baird, S.J.; Crump, J.A. Cost-Effectiveness of Surveillance for Bloodstream Infections for Sepsis Management in Low-Resource Settings. Am. J. Trop. Med. Hyg. 2015, 93, 850–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adjei, G.; Darteh, E.K.M.; Nettey, O.E.A.; Doku, D.T. Neonatal Mortality in the Central Districts of Ghana: Analysis of Community and Composition Factors. BMC Public Health 2021, 21, 173. [Google Scholar] [CrossRef] [PubMed]
- Ghana Statistical Service; Ghana Health Service; ICF International. Ghana Demographic and Health Survey 2014; GSS, GHS, ICF International: Rockville, MD, USA, 2015; Available online: https://dhsprogram.com/pubs/pdf/fr307/fr307.pdf (accessed on 8 July 2022).
- Aku, F.Y.; Akweongo, P.; Nyarko, K.; Sackey, S.; Wurapa, F.; Afari, E.A.; Ameme, D.K.; Kenu, E. Bacteriological Profile and Antibiotic Susceptibility Pattern of Common Isolates of Neonatal Sepsis, Ho Municipality, Ghana-2016. Matern. Health Neonatol. Perinatol. 2018, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Ghana|History, Flag, Map, Population, Language, Currency, & Facts|Britannica. Available online: https://www.britannica.com/place/Ghana (accessed on 8 July 2022).
- Ghana Population (2022)—Worldometer. Available online: https://www.worldometers.info/world-population/ghana-population/ (accessed on 8 July 2022).
- Drislane, F.W.; Akpalu, A.; Wegdam, H.H.J. The Medical System in Ghana. Yale J. Biol. Med. 2014, 87, 321–326. [Google Scholar]
- M100Ed32|Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 8 July 2022).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-W.; Lin, T.-C.; Chou, H.-Y.; Hung, H.-Y.; Tan, C.-K.; Wu, L.-C.; Feng, I.-J.; Shiue, Y.-L. Shortening the Time of the Identification and Antimicrobial Susceptibility Testing on Positive Blood Cultures with MALDI-TOF MS. Diagnostics 2021, 11, 1514. [Google Scholar] [CrossRef]
- Ombelet, S.; Barbé, B.; Affolabi, D.; Ronat, J.-B.; Lompo, P.; Lunguya, O.; Jacobs, J.; Hardy, L. Best Practices of Blood Cultures in Low- and Middle-Income Countries. Front. Med. 2019, 6, 131. [Google Scholar]
- Yadav, S.K.; Agrawal, S.K.; Singh, S.K.; Giri, A.; Singh, G.K.; Ghimire, R.; Stewart, A.G.; Show, K.L.; Moses, F.L. Antimicrobial Resistance in Neonates with Suspected Sepsis. Public Health Action 2021, 11, 6–12. [Google Scholar] [CrossRef]
- Alharbi, A.S. Common Bacterial Isolates Associated with Neonatal Sepsis and Their Antimicrobial Profile: A Retrospective Study at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. Cureus 2022, 14, e21107. [Google Scholar] [CrossRef]
- Oo, N.A.T.; Edwards, J.K.; Pyakurel, P.; Thekkur, P.; Maung, T.M.; Aye, N.S.S.; Nwe, H.M. Neonatal Sepsis, Antibiotic Susceptibility Pattern, and Treatment Outcomes among Neonates Treated in Two Tertiary Care Hospitals of Yangon, Myanmar from 2017 to 2019. Trop. Med. Infect. Dis. 2021, 6, 62. [Google Scholar] [CrossRef]
- Klingenberg, C.; Kornelisse, R.F.; Buonocore, G.; Maier, R.F.; Stocker, M. Culture-Negative Early-Onset Neonatal Sepsis—At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front. Pediatr. 2018, 6, 285. [Google Scholar] [CrossRef] [PubMed]
- Marchant, E.A.; Boyce, G.K.; Sadarangani, M.; Lavoie, P.M. Neonatal Sepsis Due to Coagulase-Negative Staphylococci. Clin. Dev. Immunol. 2013, 2013, 586076. [Google Scholar] [CrossRef] [PubMed]
- Alexandraki, I.; Palacio, C. Gram-Negative versus Gram-Positive Bacteremia: What Is More Alarmin(g)? Crit. Care Lond. Engl. 2010, 14, 161. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N | (%) |
---|---|---|
Total | 471 | (100.0) |
Year of admission | ||
2017 | 79 | (16.8) |
2018 | 58 | (12.3) |
2019 | 220 | (46.7) |
2020 | 114 | (24.2) |
Age in days | ||
<7 | 337 | (71.5) |
7–13 | 81 | (17.2) |
14–20 | 17 | (3.6) |
21–28 | 36 | (7.6) |
Mean (SD) | 5.4 | (7.0) |
Sex | ||
Male | 248 | (52.7) |
Female | 223 | (47.3) |
Birth weight in kilograms | ||
Very low (1.00–1.49) | 63 | (13.4) |
Low birth weight (1.50–2.49) | 85 | (18.0) |
Normal (≥2.50) | 323 | (68.6) |
Mean (SD) | 2.92 | (1.0) |
Name of ward | ||
NICU | 198 | (42.0) |
PEU | 268 | (57.0) |
POPD/ Yeboah ward/ outside | 3 | (0.6) |
Not recorded | 2 | (0.4) |
Type of beneficiary | ||
Entitled * | 81 | (17.2) |
Non entitled | 389 | (82.6) |
Not recorded | 1 | (0.2) |
Category of sepsis | ||
Early onset (<3 days) | 228 | (48.4) |
Late-onset (within 3–28 days) | 243 | (51.6) |
Hospital exit outcomes | ||
Clinically improved and discharged | 439 | (93.2) |
Died | 32 | (6.8) |
Total | Early Onset | Late-Onset | |||
---|---|---|---|---|---|
Characteristics | N | N | (%) | N | (%) |
Total | 139 | 54 | (38.8) | 85 | (61.2) |
Year of admission | |||||
2017 | 28 | 9 | (32.1) | 19 | (67.9) |
2018 | 12 | 4 | (33.3) | 8 | (66.7) |
2019 | 62 | 24 | (38.7) | 38 | (61.3) |
2020 | 37 | 17 | (45.9) | 20 | (54.1) |
Sex | |||||
Male | 77 | 30 | (39.0) | 47 | (61.0) |
Female | 62 | 24 | (38.7) | 38 | (61.3) |
Birth weight in kilograms | |||||
Very low (1.00–1.49) | 22 | 17 | (77.3) | 5 | (22.7) |
Low birth weight (1.50–2.49) | 17 | 5 | (29.4) | 12 | (70.6) |
Normal (≥2.50) | 100 | 32 | (32.0) | 68 | (68.0) |
Mean (SD) | |||||
Name of ward | |||||
NICU | 42 | 34 | (81.0) | 8 | (19.0) |
PEU | 95 | 20 | (21.1) | 75 | (78.9) |
POPD/Yeboah ward/outside | 1 | 0 | (0.0) | 1 | (100.0) |
Not recorded | 1 | 0 | (0.0) | 1 | (100.0) |
Type of beneficiary | |||||
Entitled * | 27 | 10 | (37.0) | 17 | (63.0) |
Non entitled | 112 | 44 | (39.3) | 68 | (60.7) |
Gram reactivity | |||||
Positive | 124 | 44 | (35.5) | 80 | (64.5) |
Negative | 15 | 10 | (66.7) | 5 | (33.3) |
Isolates | CoNS (n = 68) | S. aureus (n = 45) | Enterococcus spp. (n = 7) | S. agalactiae (n = 2) | S. mitis (n = 1) | S. faecalis (n = 1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotics | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) |
Amoxacillin clavulanic acid | 60 | 23 | (38) | 39 | 13 | (33) | 6 | 2 | (33) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 1 | (100) |
Ampicillin | 68 | 54 | (79) | 45 | 40 | (89) | 7 | 6 | (86) | 2 | 2 | (100) | 1 | 1 | (100) | 1 | 1 | (100) |
Cefotaxime | 61 | 35 | (57) | 44 | 27 | (61) | 6 | 4 | (67) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 1 | (100) |
Cefoxitin | - | - | - | 45 | 13 | (29) | - | - | - | - | - | - | - | - | - | - | - | |
Chloramphenicol | 68 | 27 | (40) | 45 | 28 | (62) | 7 | 5 | (71) | 2 | 0 | (0) | 1 | 1 | (100) | 1 | 1 | (100) |
Ciprofloxacin | 63 | 9 | (14) | 44 | 10 | (23) | 7 | 2 | (29) | 2 | 1 | (50) | 1 | 0 | (0) | 1 | 0 | (0) |
Cotrimoxazole | 63 | 47 | (75) | 44 | 29 | (66) | 7 | 5 | (71) | 2 | 2 | (100) | 1 | 1 | (100) | 1 | 1 | (100) |
Erythromycin | 62 | 32 | (52) | 41 | 32 | (78) | 6 | 5 | (83) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 1 | (100) |
Gentamicin | 63 | 22 | (35) | 44 | 17 | (39) | 7 | 3 | (43) | 2 | 1 | (50) | 1 | 1 | (100) | 1 | 0 | (0) |
Levofloxacin | 63 | 8 | (13) | 44 | 8 | (18) | 7 | 0 | (0) | 2 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) |
Oxacillin | 60 | 28 | (47) | 41 | 24 | (59) | 6 | 3 | (50) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 1 | (100) |
Penicillin | 60 | 42 | (70) | 41 | 33 | (80) | 6 | 6 | (100) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 1 | (100) |
Tetracycline | 68 | 44 | (65) | 45 | 22 | (49) | 7 | 5 | (71) | 2 | 2 | (100) | 1 | 1 | (100) | 1 | 1 | (100) |
Vancomycin | 61 | 27 | (44) | 41 | 31 | (76) | 6 | 4 | (67) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 1 | - |
Isolates | K. pneumoniae (n = 6) | A. baumannii (n = 3) | E. coli (n = 2) | Aeromonas veronii bv sobria (n = 1) | Pseudomonas spp. (n = 1) | M. catarrhalis (n = 1) | Salmonella spp. (n = 1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotics | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) | Test | RES | (%) |
Amikacin | 6 | 0 | (0) | 3 | 0 | (0) | 2 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) |
Amoxacillin clavulanic acid | 6 | 1 | (17) | 3 | 0 | (0) | 2 | 0 | (0) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 1 | (100) |
Ampicillin | 6 | 6 | (100) | 3 | 3 | (100) | 2 | 1 | (50) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 1 | (100) |
Cefotaxime | 5 | 3 | (60) | 3 | 0 | (0) | 2 | 1 | (50) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 1 | (100) | 1 | 1 | (100) |
Cefuroxime | 6 | 2 | (33) | 3 | 1 | (33) | 2 | 1 | (50) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) |
Chloramphenicol | 6 | 3 | (50) | 3 | 2 | (67) | 2 | 1 | (50) | 1 | 1 | (100) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 0 | (0) |
Ciprofloxacin | 6 | 2 | (33) | 3 | 0 | (0) | 2 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) |
Cotrimoxazole | 5 | 4 | (80) | 3 | 2 | (67) | 2 | 0 | (0) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 1 | (100) |
Gentamicin | 6 | 2 | (33) | 3 | 0 | (0) | 2 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 1 | (100) | 1 | 0 | (0) |
Levofloxacin | 6 | 0 | (0) | 3 | 0 | (0) | 2 | 0 | (0) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) |
Meropenem | 6 | 0 | (0) | 3 | 0 | (0 | 2 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) |
Tetracycline | 5 | 4 | (80) | 3 | 1 | (33) | 2 | 0 | (0) | 1 | 1 | (100) | 1 | 0 | (0) | 1 | 0 | (0) | 1 | 0 | (0) |
Bacteria Isolates | Number of Isolates | MDR Isolates | |
---|---|---|---|
n | (%) | ||
Overall | 139 | 71 | (51.1) |
Gram-positive isolates | 124 | 67 | (54.0) |
Coagulase Negative Staphylococcus | 68 | 35 | (51.5) |
Staphylococcus aureus | 45 | 23 | (51.1) |
Enterococcus spp. | 7 | 5 | (71.4) |
Streptococcus agalactiae | 2 | 2 | (100.0) |
Streptococcus mitis | 1 | 1 | (100.0) |
Streptococcus faecalis | 1 | 1 | (100.0) |
Gram-negative isolates | 15 | 4 | (26.7) |
Klebsiella pneumoniae | 6 | 2 | (33.3) |
Acinetobacter baumannii | 3 | 1 | (33.3) |
Escherichia coli | 2 | 0 | (0.0) |
Aeromonas veronii bv sobria | 1 | 1 | (100.0) |
Pseudomonas spp. | 1 | 0 | (0.0) |
Moraxella catarrhalis | 1 | 0 | (0.0) |
Salmonella spp. | 1 | 0 | (0.0) |
Classes of Antibiotics | Antibiotics | AWaRe Category | Tests | Resistant | |
---|---|---|---|---|---|
N | n | (%) | |||
Aminoglycosides | Amikacin | Access | 15 | 0 | (0) |
Gentamicin | Access | 133 | 47 | (35.3) | |
Amphenicols | Chloramphenicol | Access | 139 | 70 | (50.4 |
Beta-lactams—Beta lactamase inhibitor | Amoxacillin-clavulanic acid | Access | 148 | 20 | (13.5) |
Carbapenems | Meropenem | Watch | 15 | 0 | (0) |
Cephalosporins-2nd Generation | Cefoxitin | Watch Access | 45 | 13 | (28.9) |
Cefuroxime | Watch | 15 | 4 | (26.7) | |
Cephalosporins-3rd Generation | Cefotaxime | Watch | 128 | 75 | (58.6) |
Fluoroquinolones | Ciprofloxacin | Watch | 133 | 24 | (18.0) |
Levofloxacin | Access | 133 | 17 | (12.8) | |
Glycopeptides | Vancomycin | Watch | 111 | 65 | (58.6) |
Penicillin | Penicillin | Access | 110 | 84 | (76.4) |
Ampicillin | Access | 137 | 118 | (84.9) | |
Oxacillin | Access | 110 | 58 | (52.7) | |
Macrolides | Erythromycin | Watch | 112 | 71 | (63.4) |
Tetracyclines | Tetracycline | Access | 138 | 81 | (58.7) |
Sulfonamides | Cotrimoxazole | Access | 132 | 93 | (70.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetteh, F.K.M.; Fatchu, R.; Ackah, K.; Philips, T.J.; Shewade, H.D.; Fenny, A.P.; Timire, C.; Edwards, J.K.; Parbie, E.A. Sepsis among Neonates in a Ghanaian Tertiary Military Hospital: Culture Results and Turnaround Times. Int. J. Environ. Res. Public Health 2022, 19, 11659. https://doi.org/10.3390/ijerph191811659
Tetteh FKM, Fatchu R, Ackah K, Philips TJ, Shewade HD, Fenny AP, Timire C, Edwards JK, Parbie EA. Sepsis among Neonates in a Ghanaian Tertiary Military Hospital: Culture Results and Turnaround Times. International Journal of Environmental Research and Public Health. 2022; 19(18):11659. https://doi.org/10.3390/ijerph191811659
Chicago/Turabian StyleTetteh, Francis Kwame Morgan, Raymond Fatchu, Kingsley Ackah, Trudy Janice Philips, Hemant Deepak Shewade, Ama Pokuaa Fenny, Collins Timire, Jeffrey Karl Edwards, and Emmanuel Abbeyquaye Parbie. 2022. "Sepsis among Neonates in a Ghanaian Tertiary Military Hospital: Culture Results and Turnaround Times" International Journal of Environmental Research and Public Health 19, no. 18: 11659. https://doi.org/10.3390/ijerph191811659
APA StyleTetteh, F. K. M., Fatchu, R., Ackah, K., Philips, T. J., Shewade, H. D., Fenny, A. P., Timire, C., Edwards, J. K., & Parbie, E. A. (2022). Sepsis among Neonates in a Ghanaian Tertiary Military Hospital: Culture Results and Turnaround Times. International Journal of Environmental Research and Public Health, 19(18), 11659. https://doi.org/10.3390/ijerph191811659